Advertisement

A Primal-dual Interior-point Algorithm for Symmetric Cone Convex Quadratic Programming Based on the Commutative Class Directions

  • S. Asadi
  • H. MansouriEmail author
  • M. Zangiabadi
Article
  • 25 Downloads

Abstract

In this paper, we present a neighborhood following primal-dual interior-point algorithm for solving symmetric cone convex quadratic programming problems, where the objective function is a convex quadratic function and the feasible set is the intersection of an affine subspace and a symmetric cone attached to a Euclidean Jordan algebra. The algorithm is based on the [13] broad class of commutative search directions for cone of semidefinite matrices, extended by [18] to arbitrary symmetric cones. Despite the fact that the neighborhood is wider, which allows the iterates move towards optimality with longer steps, the complexity iteration bound remains as the same result of Schmieta and Alizadeh for symmetric cone optimization problems.

Keywords

interior-point method symmetric cone convex quadratic programming wide neighborhood commutative class directions complexity bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ai, W., Zhang, S. An O(\(\sqrt nL\)) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP. SIAM J. Optim., 16(2): 400–417 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Anjos, M.F., Lasserre, J.B. Handbook on Semidefinite, Conic and Polynomial Optimization: Theory, Algorithms, Software and Applications. International Series in Operational Research and Management Science, Vol. 166, Springer, 2012CrossRefGoogle Scholar
  3. [3]
    Bai, Y.Q., Ghami, M.El. A new effcient large-update primal-dual interior- point method based on a nite barrier. SIAM J. Optim., 13(3): 766–782 (2003)zbMATHCrossRefGoogle Scholar
  4. [4]
    Bai, Y.Q., Zhang, L. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. J. Ind. Manag. Optim., 7(4): 891–906 (2011)MathSciNetzbMATHGoogle Scholar
  5. [5]
    Faraut, J., Korányi, A. Analysis on symmetric cones. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, Oxford Science Publications, 1994zbMATHGoogle Scholar
  6. [6]
    Faybusovich, L. Euclidean Jordan algebras and interior-point algorithms. Positivity, 1(4): 331–357 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Faybusovich, L. A Jordan-algebraic approach to potential-reduction algorithms. Math. Z., 239(1): 117–129 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Güler, O. Barrier functions in interior point methods. Math. Oper. Res., 21(4): 860–885 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Gu, G., Zangiabadi, M., Roos, C. Full Nesterov-Todd step interior-point methods for symmetric optimization. Eur. J. Oper. Res., 214(3): 473–484 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Li, L., Toh, K.C. A polynomial-time inexact interior-point method for convex quadratic symmetric cone programming. J. Math. Ind., 2: 199–212 (2010)MathSciNetzbMATHGoogle Scholar
  11. [11]
    Liu, C. Study on Complexity of Some Interior-Point Algorithms in Conic Programming. Ph.D. thesis, Xidian University, 2012 (in Chinese)Google Scholar
  12. [12]
    Liu, H., Yang, X., Liu, C. A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming. J. Optim. Theory Appl., 158(3): 796–815 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Monteiro, R.D.C., Zhang, Y. A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite programming. Math. Programming, 81(3): 281–299 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Monteiro, R.D.C., Alder, I. Interior-path following primal-dual algorithms. Part II: Convex quadratic programming. Math. Program., 44(1): 43–66 (1989)zbMATHCrossRefGoogle Scholar
  15. [15]
    Nesterov, Y.E., Todd, M.J. Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res., 22(1): 1–42 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Nie, J.W., Yuan, Y.X. A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps. Ann. Oper. Res., 103(14): 115–133 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Rangarajan, B.K. Polynomial convergence of infeasible interior point methods over symmetric cones. SIAM J. Optim., 16(4): 1211–1229 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Schmieta, S.H., Alizadeh. F. Extension of primal-dual interior point algorithms to symmetric cones. Math. Program., 96(3): 409–438 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Tuncel, L. Generalization of primal-dual interior-point methods to convex optimization problems in conic form. Found. Comput. Math., 1(3): 229–254 (2001)MathSciNetzbMATHGoogle Scholar
  20. [20]
    Toh, K.C. An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. Ser. B, 112(1): 221–254 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Wang, G.Q., Zhang, Z.H., Zhu, D.T. On extending primal-dual interior-point method for linear optimization to convex quadratic symmetric cone optimization. Numer. Fund. Anal. Optim., 34(5): 576–603 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Wang, G.Q., Yu, C.J., Teo, K.L. A new full Nesterov-Todd step feasible interior-point method for convex quadratic optimization over symmetric cone. Appl. Math. Comput., 221(15): 329–343 (2013)MathSciNetzbMATHGoogle Scholar
  23. [23]
    Wang, G.Q., Zhu. D.T. A unified kernel function approach to primal-dual interior- point algorithms for convex quadratic SDO. Numer. Algorithms, 57(4): 537–558 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Wang, G.Q., Bai, Y.Q. Primal-dual interior-point algorithms for convex quadratic semidefinite optimization. Nonlinear Analysis: Theory, Methods & Applications, 71(7–8): 3389–3402 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Yang, X., Liu, H., Liu, C. A Mehrotra-type predictor-corrector infeasible-interior-point method with a new one-norm neighborhood for symmetric optimization. J. Comput. Appl. Math., 283: 106–121 (2015)Google Scholar

Copyright information

© The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesShahrekord UniversityShahrekordIran

Personalised recommendations