Advertisement

A study on monotone self-dual Boolean functions

  • Mustafa Altun
  • Marc D. Riedel
Article
  • 49 Downloads

Abstract

This paper shows that monotone self-dual Boolean functions in irredundant disjuntive normal form (IDNF) do not have more variables than disjuncts. Monotone self-dual Boolean functions in IDNF with the same number of variables and disjuncts are examined. An algorithm is proposed to test whether a monotone Boolean function in IDNF with n variables and n disjuncts is self-dual. The runtime of the algorithm is O(n3).

Keywords

duality problem monotone Boolean functions self-dual Boolean functions 

2000 MR Subject Classification

03-XX: Mathematical logic and foundations 05-XX: Combinatorics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Altun, M., Riedel, M.D. Lattice-based computation of Boolean functions. In: Design Automation Conference, 2010, 609–612Google Scholar
  2. [2]
    Altun, M., Riedel, M.D. Logic synthesis for switching lattices. IEEE Transactions on Computers, 61(11): 1588–1600 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L. Generating maximal independent sets for hypergraphs with bounded edge-intersections. LATIN 2004: Theoretical Informatics, 488–498, 2004CrossRefGoogle Scholar
  4. [4]
    Boros, E., Hammer, P., Ibaraki, T., Kawakami, K. Polynomial-time recognition of 2-monotonic positive boolean functions given by an oracle. SIAM Journal on Computing, 26(1): 93–109 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Eiter, T., Gottlob, G. Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing, 24(6): 1278–1304 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Eiter, T., Gottlob, G. Hypergraph transversal computation and related problems in logic and AI. Lecture Notes in Computer Science 2424: 549–564 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Eiter, T., Makino, K., Gottlob, G. Computational aspects of monotone dualization: A brief survey. Discrete Applied Mathematics, 156(11): 1952–2005 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Elbassioni, K. On the complexity of monotone dualization and generating minimal hypergraph transver-sals. Discrete Applied Mathematics, 156(11): 2109–2123 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Elbassioni, K., Rauf, I. Polynomial-time dualization of r-exact hypergraphs with applications in geometry. Discrete Mathematics 310(17): 2356–2363 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Fredman, M.L., Khachiyan, L. On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms, 21(3): 618–628 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Gaur, D.R., Krishnamurti, R. Self-duality of bounded monotone boolean functions and related problems. In: Algorithmic Learning Theory. Springer-Verlag, 2000, 209–223CrossRefGoogle Scholar
  12. [12]
    Gaur, D.R., Krishnamurti, R. Self-duality of bounded monotone Boolean functions and related problems. Discrete Applied Mathematics, 156(10): 1598–1605 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Gottlob, G. Deciding monotone duality and identifying frequent itemsets in quadratic logspace. arXiv: 1212.1881 (2012)Google Scholar
  14. [14]
    Karasan, O.E. Incremental polynomial time dualization of quadratic functions and a subclass of degree-k functions. Annals of Operations Research, 188(1): 251–261 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Makino, K. Efficient dualization of O (log n)-term monotone disjunctive normal forms. Discrete Applied Mathematics, 126: 305–312 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Papadimitriou, C.H. Computational complexity. John Wiley and Sons Ltd., 2003zbMATHGoogle Scholar

Copyright information

© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations