Advertisement

Acta Mathematicae Applicatae Sinica, English Series

, Volume 31, Issue 4, pp 1131–1140 | Cite as

Bound states of (1+1)-dimensional Dirac equation with kink-like vector potential and delta interaction

  • M. EshghiEmail author
  • H. Mehraban
  • Sameer M. Ikhdair
Article

Abstract

The relativistic problem of spin-1/2 fermions subject to vector hyperbolic (kink-like) potential (∼ tanh kx) is investigated by using the parametric Nikiforov-Uvarov method. The energy eigenvalue equation and the corresponding normalized wave functions are obtained in terms of the Jacobi polynomials in two cases.

Keywords

(1+1)-dimensional Dirac equation kink-like potential Rosen-Morse potential NU method 

2000 MR Subject Classification

81Q05 81Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramowitz, M., Stegun, I. Handbook of mathematical function with formulas, graphs and mathematical tables. Dover, New York, 1964Google Scholar
  2. [2]
    Akcay, H. Dirac equation with scalar and vector quadratic potentials and Coulomb-like tensor potential. Phys. Lett. A, 373: 616–620 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Antonio S., de Castro. Effects of a mixed vector-scalar kink-like potential for spinless particles in twodimensional space-time. Int. J. Mod. Phys. A, 22: 2609–2618 (2007); DOI: 10.1142/S0217751X07036828.zbMATHCrossRefGoogle Scholar
  4. [4]
    Antonio, S. de Castro A, Hott, M. Trapping neutral fermions with kink-like potentials. Phys. Lett. A, 351: 379 (2006)CrossRefGoogle Scholar
  5. [5]
    Aydogdu, O., Sever, R. Exact solution of the Dirac equation with the Mie-type potential under the pseudospin and spin symmetry limit. Ann. Phys., 325: 373–383 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Brittin, W.E. Lectures in theoretical physics, Vol. IV. Interscience Publishers, New York, 1962Google Scholar
  7. [7]
    Eshghi, M. Dirac-hyperbolic Scarf problem including a Coulomb-like tensor potential. Acta Sci. Thech., 34(2): 207–215 (2012)Google Scholar
  8. [8]
    Eshghi, M., Hamzavi, M. Spin symmetry in Dirac-attractive Radial problem and tensor potential. Commun. Theor. Phys., 57: 355–360 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Eshghi, M., Mehraban, H. Eigen spectra for Manning-Rosen potential including a Coulomb-like tensor interaction. Int. J. Phys. Sci., 16: 6643–6652 (2012)Google Scholar
  10. [10]
    Eshghi, M., Mehraban, H. Eigen spectra in Dirac-hyperbolic problem plus tensor coupling. Chin. J. Phys., 50(4): 533–543 (2012)MathSciNetGoogle Scholar
  11. [11]
    Eshghi, M., Mehraban, H. Solution of the Dirac equation with position-dependent mass for q-parameter modified Poschl-Teller and Coulomb-like tensor potential. Few-Body Syst., 52: 41–47 (2012)CrossRefGoogle Scholar
  12. [12]
    Greiner, W. Relativistic Quantum Mechanics, Wave Equations. Springer-Verlag, New York, 1990zbMATHCrossRefGoogle Scholar
  13. [13]
    Ikhdair, S.M. Rotational and vibrational diatomic molecule in the Klein-Gordon equation with hyperbolic scalar and vector potentials. Int. J. Mod. Phys. C, 20(10): 1563–1582 (2009)zbMATHCrossRefGoogle Scholar
  14. [14]
    Ikhdair, S.M. Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential. Chem. Phys., 361: 9–17 (2009)CrossRefGoogle Scholar
  15. [15]
    Jia, C.-S. de Souza Dutra, A. Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys., 323: 566–579 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Jia, C.-S., de Souza Dutra, A. Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials. J. Phys. A: Math. Gen., 39: 11877 (2006); doi:10.1088/0305-4470/39/38/013zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Jia, C.-S., Diao, Yong-Feng, Liu Jian-Yi. Bounded solutions of the Dirac equation with a PT-symmetric kink-like vector potential in two-dimensional space-time. Int. J. Theor. Phys., 47: 2513–2522 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Jia, C.-S., Li, Xiao-Ping, Zhang, Lie-Hui. Exact solutions of the Klein-Gordon equation with positiondependent mass for mixed vector and scalar kink-like potentials. Few Body Syst., 52: 11–18 (2012)CrossRefGoogle Scholar
  19. [19]
    Katsnelson, M.I., Novoselov, K.S., Geim, A.K. Chiral Tunnelling and the Klein Paradox in Graphene. Nature Phys., 2: 620–625 (2006)CrossRefGoogle Scholar
  20. [20]
    Luis, A.G.-D., Victor, M.V. Resonances in the one-dimensional Dirac equation in the presence of a point interaction and a constant electric field. Phys. Lett. A, 352: 202–205 (2006)zbMATHCrossRefGoogle Scholar
  21. [21]
    Magnus, W., Oberhenttinger, F., Soni, R.P. Formulas and theorems for the special functions of mathematical physics, 3Ed. Springer, Berlin, 1966zbMATHCrossRefGoogle Scholar
  22. [22]
    Nikiforov, A.F., Uvarov, V.B. Special Functions of Mathematical Physics. Birkhauser Verlag, Basel, 1988zbMATHCrossRefGoogle Scholar
  23. [23]
    Peng, X.-L. Liu, J.-Y. Jia, C.-S. Approximation solution of the Dirac equation with position-dependent mass for the generalized Hulthen potential. Phys. Lett. A, 352: 478–483 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Ryder, L.H. Quantum Field Theory. Cambridge University Press, Cambridge, 1985zbMATHGoogle Scholar
  25. [25]
    Salamin, Y.I., Hu, S., Hatsagortsyan, K.Z., Keitel, Ch.. Relativistic high-power laser-matter interactions. Phys. Rep., 427(2–3): 41–155 (2006)CrossRefGoogle Scholar
  26. [26]
    Tezcan, C., Sever, R. A General Approach for the Exact Solution of the Schrödinger Equation. Int. J. Theor. Phys., 48: 337–350 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Tian, W.-J. Bound state for spin-0 and spin-1/2 particles with vector and scalar hyperbolic tangent and cotangent potentials. http://www.paper.edu.cnGoogle Scholar
  28. [28]
    Titchmarsh, E C. Eigenfunction expansions associated with second order differential equations, part II, Be deleted ands be revised as: Clarendon Press, Oxford, 1958Google Scholar
  29. [29]
    Victor, M.V., Luis, A.G.-D. Particle resonance in the Dirac equation in the presence of a delta interaction and perturbative hyperbolic potential. Europ. Phys. J. C., 61(3): 519–525 (2009); ArXiv: 0903.2597v2 [hep-th] 25 Mar 2009CrossRefGoogle Scholar
  30. [30]
    Wang, I.C., Wong, C.Y. Finite-size effect in the Schwinger particle-production mechanism. Phys. Rev. D., 38: 348–359 (1988)CrossRefGoogle Scholar
  31. [31]
    Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H. Dirac equation for the harmonic Scalar and vector potentials and linear plus Coulomb-like tensor potential; the SUSY approach. Ann. Phys., 325: 2522–2528 (2010)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Yang Researchers and Elite ClubCentral Tehran Branch, Islamic Azad UniversityTehranIRAN
  2. 2.Faculty of PhysicsSemnan UniversitySemnanIRAN
  3. 3.Department of Electrical EngineeringNear East UniversityNicosiaTurkey
  4. 4.Department of Physics, Faculty of ScienceAn-Najah National UniversityNablusPalestine

Personalised recommendations