Asymptotic analysis of quantum dynamics in crystals: the Bloch-Wigner transform, Bloch dynamics and Berry phase

  • Weinan E
  • Jian-feng Lu
  • Xu Yang


We study the semi-classical limit of the Schrödinger equation in a crystal in the presence of an external potential and magnetic field. We first introduce the Bloch-Wigner transform and derive the asymptotic equations governing this transform in the semi-classical setting. For the second part, we focus on the appearance of the Berry curvature terms in the asymptotic equations. These terms play a crucial role in many important physical phenomena such as the quantum Hall effect. We give a simple derivation of these terms in different settings using asymptotic analysis.


semiclassical limit Bloch-Wigner transform Bloch dynamics Berry phase asymptotic analysis 

2000 MR Subject Classification

81Q20 81Q05 35Q40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aschroft, N.W., Mermin, N.D. Solid State Physics. Holt, Rinehart and Winston, New York, 1976Google Scholar
  2. [2]
    Bechouche, P., Mauser, N.J., Poupaud, F. Semiclassical limit for the Schrödinger-Poisson equation in a crystal. Comm. Pure Appl. Math., 54(7): 851–890 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bal, G., Fannjiang, A., Papanicolaou, G., Ryzhik, L. Radiative transport in a periodic structure. J. Statist. Phys., 95: 479–494 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. Lond. A, 392: 45–57 (1984)CrossRefzbMATHGoogle Scholar
  5. [5]
    Carles, R., Markowich, P.A., Sparber, C. Semiclassical asymptotics for weakly nonlinear Bloch waves. J. Stat. Phys., 117(1–2): 343–375 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Dimassi, M., Guillot, J.C., Ralston, J. Semiclassical asymptotics in magnetic Bloch bands. J. Phys. A: Math. Gen., 35: 7597–7605 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Gerard, P., Markowich, P.A., Mauser, N.J., Poupaud, F. Homogenization limits and Wigner transforms. Comm. Pure Appl. Math., 50(4): 323–380 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Jin, S., Wu, H., Yang, X., Huang, Z.Y. Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. J. Comput. Phys., to appearGoogle Scholar
  9. [9]
    Lions, P.-L., Paul, T. Sur les mesures de Wigner. Rev. Mat. iberoamericana, 9(3): 553–618 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Markowich, P.A., Mauser, N.J., Poupaud, F. A Wigner-function approach to (semi) classical limits: electrons in a periodic potential. J. Math. Phys., 35: 1066–1094 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Panati, G., Spohn, H., Teufel, S. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys., 242(3): 547–578 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Panati, G., Spohn, H., Teufel, S. Motions of electrons in adiabatically perturbed periodic structures. Analysis, modeling and simulation of multiscale problems, 595–617, Springer-Verlag, Berlin, 2006CrossRefGoogle Scholar
  13. [13]
    Reed, M., Simon, B. Methods of modern mathematical physics, Vol IV. Academic Press, New York, 1980Google Scholar
  14. [14]
    Shapere, A., Wilczek, F. (eds.) Geometric Phases in Physics. World Scientific, Singapore, 1989zbMATHGoogle Scholar
  15. [15]
    Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett., 51: 2167–2170 (1983)MathSciNetCrossRefGoogle Scholar
  16. [16]
    Sparber, C., Markowich, P.A., Mauser, N.J. Wigner functions versus WKB-methods in multivalued geometrical optics. Asymptot. Anal., 33(2): 153–187 (2003)MathSciNetzbMATHGoogle Scholar
  17. [17]
    Sundaram, G., Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B, 59: 14915–14925 (1999)CrossRefGoogle Scholar
  18. [18]
    Xiao, D., Chang, M.-C., Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys., 82(3): 1959–2007 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Xiao, D., Shi, J., Clougherty, D.P., Niu, Q. Polarization and adiabatic pumping in inhomogeneous crystals. Phys. Rev. Lett., 102: 087602 (2009)CrossRefGoogle Scholar

Copyright information

© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  3. 3.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations