A Score Type Test for General Autoregressive Models in Time Series

Original Papers

Abstract

This paper is devoted to the goodness-of-fit test for the general autoregressive models in time series. By averaging for the weighted residuals, we construct a score type test which is asymptotically standard chi-squared under the null and has some desirable power properties under the alternatives. Specifically, the test is sensitive to alternatives and can detect the alternatives approaching, along a direction, the null at a rate that is arbitrarily close to n−1/2. Furthermore, when the alternatives are not directional, we construct asymptotically distribution-free maximin tests for a large class of alternatives. The performance of the tests is evaluated through simulation studies.

Keywords

Autoregressive model goodness-of-fit maximin test model checking score type test time series 

2000 MR Subject Classification

62F05 62H15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnen, K., Neuhaus, G. Rank Tests with Estimated Scores and Their Application. B.G. Newbner, Stuttgart, Germany 1989Google Scholar
  2. 2.
    Billingsley, P. The Lindeberg-Levy theorem for martingales. Proc. Am. Math. Soc., 12:788–92 (1961)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bollerslev, T., Wooldridge, J.M. Maximum likelihood estimation and inference in dynamic models with time varying covariance. Economet. Rev., 11:143–172 (1992)MATHMathSciNetGoogle Scholar
  4. 4.
    Chen, S.X., Härdle, W., Li, M. An empirical likelihood goodness-of-fit test for time series. J. R. Statist. Soc. B., 65:663–678 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Eubank, R. L., Hart, J.D. Commonalty of cusum, von Neumann and smoothing-based goodness-of-fit tests. Biometrika, 80:89–98 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Härdle, W., Mammen, E. Comparing non-parametric versus parametric regression fits. Ann. Statist., 21:1926–1947 (1993)MATHMathSciNetGoogle Scholar
  7. 7.
    He, X., Zhu, L.X. A lack-of-fit test for quantile regression. J. Am. Stat. Assoc., 464:1013–1022 (2003)CrossRefGoogle Scholar
  8. 8.
    Koul, H. L., Stute , W. Nonparametric method checks for time series. Ann. Statist., 27:204–236 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Strasser, H. Mathematical Theory of Statistics. De Gruyter, Berlin, 1985Google Scholar
  10. 10.
    Stute, W. Nonparametric model checks for regression. Ann. Statist., 25:613–641 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stute, W., Thies, S., Zhu, L.X. Model checks for regression:An innovation process approach. Ann. Statist., 26:1916–1934 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Stute, W., Zhu L.X. Model checks for generalized linear models. Scan. J. Statist., 29:535–546 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Stute, W. and Zhu, L. X. Nonparametric checks for single-index models. Ann. Statist., 33(3):1048–1083 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhu, L.X. Model checking of dimension-reduction type for regression. Statist. Sinica, 13:283–296 (2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Zhu, L. X., Ng, K.W. Checking the adequacy of a partial linear model. Statist. Sinica, 13:763–781 (2003)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.College of Statistics and MathematicsZhejiang Gongshang UniversityHangzhouChina
  2. 2.Hong Kong Baptist UniversityHong KongChina
  3. 3.East China Normal UniversityShanghaiChina

Personalised recommendations