The Boundedness for Commutators of Multipliers

Original Papers


Let [b, T] be the commutator generated by a Lipschitz function b ∈ Lip(β)(0 < β < 1) and multiplier T. The authors studied the boundedness of [b, T] on the Lebesgue spaces and Hardy spaces.


Commutator multiplier Lipschitz space hardy space 

2000 MR Subject Classification

42B20 42B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, J., Bagby, R., Kurtz, D.S., Pérez, C. Weighted estimates for commutators of linear operators. Studia Math., 104: 195–209 ( 1993)MathSciNetMATHGoogle Scholar
  2. 2.
    Calderon, A.P., Torchinsky, A. Parabolic maximal functions associated with a distribution, II. Adv. Math., 24: 101–171 (1977)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Chanillo, S. A note on commutators. Indiana Univ. Math. J., 31: 7–16 (1982)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Coifman, R., Rochberg, R., Weiss, G. Factorization theorems for Hardy spaces in several variables. Ann. Math., 103: 611–635 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fefferman C., Stein, E.M. H p spaces of several variables. Acta Math., 129: 137–193 (1972)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Hörmander, L. Estimate for translation invariant operators in L p spaces. Acta Math., 104: 93–139 (1960)MathSciNetMATHGoogle Scholar
  7. 7.
    Janson, S. Mean oscillation and commutators of singular integral operators. Ark. Math., 16: 263–270 (1978)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Kurtz, D.S., Wheeden, R.L. Results on weighted norm inequalities for multipliers. Tran. Amer. Math. Soc., 255: 343–362 (1979)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Lu, S.Z., Wu, Q., Yang, D.C. Boundedness of commutators on Hardy type spaces. Science in China, 45: 984–997 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Muckenhoupt, B., Wheeden, R.L. Weighted norm inequalities for fractional integrals. Tran. Amer. Math. Soc., 192: 261–274 (1974)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Paluszyński, M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J., 44: 1–17 (1995)MathSciNetMATHGoogle Scholar
  12. 12.
    Pérez, C. Endpoint estimates for commutators of singular integral operators. J. Funct. Anal., 128: 163–185 (1995)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Stein, E.M. Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals. Princetion Univ Press, Princetion, NJ, 1993Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuang 050016China
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijing 100875China
  3. 3.School of SciencesBeijing University of Post and TelecommunicationsBeijing 100875China
  4. 4.School of Mathematical SciencesBeijing Normal UniversityBeijing 100875China

Personalised recommendations