Acta Mathematicae Applicatae Sinica, English Series

, Volume 19, Issue 3, pp 371–386 | Cite as

On First Order Optimality Conditions for Vector Optimization

  • L. M. Graña Drummond
  • A. N. Iusem
  • B. F. Svaiter
Original papers

Abstract

We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.

Keywords

Cone constraints vector optimization Pareto minimization first order optimality conditions convex programming duality 

2000 MR Subject Classification

90C25 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avriel, M. Nonlinear programming: analysis and methods. Prentice Hall, New Jersey, 1976Google Scholar
  2. 2.
    Cambini, R. Some new classes of generalized concave vector valued functions. Optimization, 36:11–24 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, G.Y., Rong, W.D. Characerization of the Benson proper efficiency for nonconvex vector optimization. Journal of Optimization Theory and Applications, 98:365–384 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clarke, F.H. Optimization and nonsmooth analysis. John Wiley, New York, 1983Google Scholar
  5. 5.
    Escalante, C., Raydan, M. Dijkstra’s algorithm for a constrained least–squares matrix problem. Numerical Linear Algebra with Applications, 3:459–471 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fliege, J., Svaiter, B.F. Steepest descent methods for multicriteria optimimization. Mathematical Methods of Operations Research, 51:479–494 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Flores–Bazán, F. Ideal, weakly efficient solutions for convex vector optimization problems. Technical Report, 99–26, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile, 1999Google Scholar
  8. 8.
    Frenk, J.B.G., Kassay, G. On classes of generalized convex functions, Gordan–Farkas type theorems, and Lagrangian duality. Journal of Optimization Theory and Applications, 102:315–343 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Geoffrion, A.M. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22:618–630 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Graña Drummond, L.M., Iusem, A.N. First order conditions for ideal minimization. Journal of Convex Analysis, 10:129–147 (2003)MathSciNetGoogle Scholar
  11. 11.
    Hiriart–Urruty, J.–B., Lemaréchal, C. Convex analysis and minimization algorithms. Springer, Berlin, 1993Google Scholar
  12. 12.
    Illes, T., Kassay, G. Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. Journal of Optimization Theory and Applications, 101:243–257 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, Z., Chen, G.Y. Lagrangian multipliers, saddle points, and duality in vector optimization of set–valued maps. Journal of Mathematical Analysis and Applications, 215:297–316 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luc, T.D. Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, 319, Springer, 1989Google Scholar
  15. 15.
    Maeda, T. Constraint qualifications in multiobjective optimization problems: differentiable case. Journal of Optimization Theory and Applications, 80:483–500 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Preda, V., Chitescu, I. On constraint qualifications in multiobjective optimization problems: semidifferentiable case. Journal of Optimization Theory and Applications, 100:417–434 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rockafellar, R.T. Convex analysis. Princeton University Press, New Jersey, 1970Google Scholar
  18. 18.
    Shapiro, A. First and second order analysis of nonlinear semidefinite programs. Mathematical Programming, 77:301–320 (1997)MathSciNetGoogle Scholar
  19. 19.
    Shapiro, A. On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM Journal on Optimization, 7:508–518 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Singh, C. Optimality conditions in multiobjective differentiable programming. Journal of Optimization Theory and Applications, 53:115–123 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sundaram, R.K. A first course in optimization theory. Cambridge University Press, Cambridge, 1996Google Scholar
  22. 22.
    van Rooyen, M., Zhou, X., Zlobec, S. A saddle–point characterization of Pareto optima. Mathematical Programming, 67:77–88 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vanderberghe, L., Boyd, S. Positive–definite programmming. In: Mathematical Programming: state of the art (Birge, J.R., Murty, K.G.M. edit), University of Michigan, Ann Arbor, 276–308 (1994)Google Scholar
  24. 24.
    Zlobec, S. Characterizing optimality in mathematical programming models. Acta Applicandae Mathematicae, 12:113–180 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • L. M. Graña Drummond
    • 1
  • A. N. Iusem
    • 2
  • B. F. Svaiter
    • 2
  1. 1.Programa de Engenharia de Sistemas de Computação COPPE-UFRJ, CP 68511Rio de Janeiro-RJBrazil
  2. 2.Instituto de Matemática Pura e Aplicada (IMPA)Rio de Janeiro, RJBrazil

Personalised recommendations