Acta Mathematicae Applicatae Sinica

, Volume 19, Issue 2, pp 191–204

Approximate Inertial Manifolds to the Generalized Symmetric Regularized Long Wave Equations with Damping Term

Original Papers

Abstract

In the present paper, we construct two approximate inertial manifolds for the generalized symmetric regularized long wave equations with damping term. The orders of approximations of these manifolds to the global attractor are derived.

Keywords

Symmetric regularized long wave equation periodic initial value problem long time behavior approximate inertial manifolds damping term 

2000 MR Subject Classification

35B40 35K57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert J. On the decay of solutions of the generalized BBM equation. J. Math. Anal. Appl., 141:527–537 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amick C.J., Bona J.L., Schonbek M.E. Decay of solutions of some nonlinear wave equations. J. Diff. Eqn., 81:1–49 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bogolubsky J.L. Some examples of inelastic soliton interaction. Comput. Phys. Comm., 13:149-155 (1977)CrossRefGoogle Scholar
  4. 4.
    Chen L. Stability and instability of solitary wave for generalized symmetric regularized long wave equations. Physica D, 118(1–2):53–68 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Foias C., Manley O., Temam R. Sur’l interaction des peties et grands tourbillon’s dans les ecoulements turbulents. C. R. Acad. Sci. Paris. Ser I, Math., 305:497–500 (1987)MATHMathSciNetGoogle Scholar
  6. 6.
    Guo B.L. The spectral method for symmetric regularized wave equations. J. Comp. Math., 5(4):297–306 (1987)MATHGoogle Scholar
  7. 7.
    Guo B.L.,Wang B.X. Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations. Chin. Ann. of Math., 19B(2):179–188 (1998)Google Scholar
  8. 8.
    Miao C.X. The initial boundary value problem for symmetric long wave equations with non-homogeneous boundary value. Northeastern. Math. J., 10(4):463–472 (1994)MATHMathSciNetGoogle Scholar
  9. 9.
    Promislow K. Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations. Nonl. Anal. TMA, 16:959–980 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Seyler E.C., Fanstermacler D.C. A symmetric regularized long wave equation. Phys. Fluids, 27(1):4–7 (1984)MATHCrossRefGoogle Scholar
  11. 11.
    Shang Y.D., Li Z.S. Fourier spectral methods for solving generalized symmetric regularized long wave equations in higer dimensions. Numer. Math. J. of Chinese Universities, 21(1):48–60 (1999)MATHMathSciNetGoogle Scholar
  12. 12.
    Temam R. Attractors for the Navier-Stokes equations:localization and approximation. J. Fac. Sci. Univ. Tokyo. Sec IA, 36:729–647 (1989)MathSciNetGoogle Scholar
  13. 13.
    Zheng J.D. The pseudospectral collocation method for the generalized SRLW equations. Numer. Math. Sinica, 11(1):64–72 (1989)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina

Personalised recommendations