Advertisement

Publications mathématiques de l'IHÉS

, Volume 130, Issue 1, pp 187–297 | Cite as

Separation for the stationary Prandtl equation

  • Anne-Laure Dalibard
  • Nader Masmoudi
Article
  • 54 Downloads

Abstract

In this paper, we prove that separation occurs for the stationary Prandtl equation, in the case of adverse pressure gradient, for a large class of boundary data at \(x=0\). We justify the Goldstein singularity: more precisely, we prove that under suitable assumptions on the boundary data at \(x=0\), there exists \(x^{*}>0\) such that \(\partial _{y} u_{|y=0}(x) \sim C \sqrt{x^{*} -x}\) as \(x\to x^{*}\) for some positive constant \(C\), where \(u\) is the solution of the stationary Prandtl equation in the domain \(\{0< x< x^{*},\ y> 0\}\). Our proof relies on three main ingredients: the computation of a “stable” approximate solution, using modulation theory arguments; a new formulation of the Prandtl equation, for which we derive energy estimates, relying heavily on the structure of the equation; and maximum principle and comparison principle techniques to handle some of the nonlinear terms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769–790. MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Beirão da Veiga and F. Crispo, Concerning the \(W^{k,p}\)-inviscid limit for 3-D flows under a slip boundary condition, J. Math. Fluid Mech., 13 (2011), 117–135. MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Clopeau, A. Mikelić and R. Robert, On the vanishing viscosity limit for the \(2{\mathrm{D}}\) incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625–1636. MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Cortazar, M. del Pino and M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, arXiv:1604.07117, 2016.
  5. 5.
    M. del Pino, Bubbling blow-up in critical parabolic problems, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math., vol. 2186, pp. 73–116, Springer, Cham, 2017, MR 3588122. CrossRefGoogle Scholar
  6. 6.
    M. del Pino, M. Musso and J. Wei, Type II blow-up in the 5-dimensional energy critical heat equation, arXiv:1808.10637, 2018.
  7. 7.
    D. Gerard-Varet and Y. Maekawa, Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations, Arch. Ration. Mech. Anal., 233 (2019), 1319–1382. MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Gerard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 1273–1325. MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Goldstein, On laminar boundary-layer flow near a position of separation, Q. J. Mech. Appl. Math., 1 (1948), 43–69. MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Commun. Pure Appl. Math., 53 (2000), 1067–1091. MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Guo and S. Iyer, Validity of steady Prandtl layer expansions, arXiv:1805.05891, 2018.
  12. 12.
    Y. Guo and T. T. Nguyen, Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate, Ann. PDE, 3 (2017), 10. MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d’équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci., Sér. 1 Math., 319 (1994), 141–145. zbMATHGoogle Scholar
  14. 14.
    D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145–175. MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Iyer, Global Steady Prandtl expansion over a moving boundary, arXiv:1609.05397, 2016.
  16. 16.
    S. Iyer, Steady Prandtl boundary layer expansions over a rotating disk, Arch. Ration. Mech. Anal., 224 (2017). MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Iyer, Steady Prandtl layers over a moving boundary: non-shear Euler flows, arXiv:1705.05936, 2017.
  18. 18.
    T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in Seminar on Nonlinear Partial Differential Equations, Math. Sci. Res. Inst. Publ., vol. 2, Berkeley, CA, 1983, pp. 85–98, Springer, New York, 1984. CrossRefGoogle Scholar
  19. 19.
    J. P. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., 38 (2006), 210–232. MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Physica D, 240 (2011), 619–628. MathSciNetCrossRefGoogle Scholar
  21. 21.
    I. Kukavica and V. Vicol, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., 11 (2013), 269–292. MathSciNetCrossRefGoogle Scholar
  22. 22.
    I. Kukavica, N. Masmoudi, V. Vicol and T. Kwong Wong, On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., 46 (2014), 3865–3890. MathSciNetCrossRefGoogle Scholar
  23. 23.
    I. Kukavica, V. Vicol and F. Wang, The van Dommelen and Shen singularity in the Prandtl equations, Adv. Math., 307 (2017), 288–311. MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, vol. 6, Pergamon/Addison-Wesley, London-Paris-Frankfurt/Reading, 1959, translated from the Russian by Sykes, J.B. and Reid, W.H. Google Scholar
  25. 25.
    M.C. Lombardo, M. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987–1004. MathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary, Arch. Ration. Mech. Anal., 142 (1998), 375–394. MathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Masmoudi, About the Hardy inequality, in An Invitation to Mathematics, pp. 165–180, Springer, Berlin, 2011. CrossRefGoogle Scholar
  28. 28.
    N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529–575. MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417. MathSciNetCrossRefGoogle Scholar
  30. 30.
    N. Masmoudi and T.K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683–1741. MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Merle and P. Raphael, On universality of blow-up profile for \(L^{2}\) critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565–672. MathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math. (2), 161 (2005), 157–222. MathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Merle, P. Raphaël and I. Rodnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., 193 (2013), 249–365. MathSciNetCrossRefGoogle Scholar
  34. 34.
    F. Merle, P. Raphaël and I. Rodnianski, Type II blow up for the energy supercritical NLS, Camb. J. Math., 3 (2015), 439–617. MathSciNetCrossRefGoogle Scholar
  35. 35.
    O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, 1999. zbMATHGoogle Scholar
  36. 36.
    L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, in Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, 1904, pp. 484–491, Teubner, Leipzig, 1905. Google Scholar
  37. 37.
    M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433–461. MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Commun. Math. Phys., 192 (1998), 463–491. MathSciNetCrossRefGoogle Scholar
  39. 39.
    K. Stewartson, On Goldstein’s theory of laminar separation, Q. J. Mech. Appl. Math., 11 (1958), 399–410. MathSciNetCrossRefGoogle Scholar
  40. 40.
    C. Sulem and P.-L. Sulem, Self-focusing and wave collapse, in The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, vol. 139, Springer, New York, 1999. zbMATHGoogle Scholar
  41. 41.
    Y.-G. Wang and S.-Y. Zhu, Separation of the two-dimensional unsteady Prandtl boundary layers under adverse pressure gradient, arXiv:1801.10481, 2018.
  42. 42.
    E. Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. Engl. Ser., 16 (2000), 207–218. MathSciNetCrossRefGoogle Scholar
  43. 43.
    E. Weinan and B. Engquist, Blowup of solutions of the unsteady Prandtl’s equation, Commun. Pure Appl. Math., 50 (1997), 1287–1293. MathSciNetCrossRefGoogle Scholar
  44. 44.
    Z. Xin, Viscous boundary layers and their stability. I, J. Partial Differ. Equ., 11 (1998), 97–124. MathSciNetzbMATHGoogle Scholar
  45. 45.
    V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz., 61 (1971), 118–134. Google Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anne-Laure Dalibard
    • 1
  • Nader Masmoudi
    • 2
    • 3
  1. 1.Laboratoire Jacques-Louis Lions, LJLLSorbonne Université, Université Paris-Diderot SPC, CNRSParisFrance
  2. 2.NYUAD campusSaadiyat Island Abu DhabiUAE
  3. 3.Courant InstituteNew York UniversityNew YorkUnited States

Personalised recommendations