Advertisement

Topological Hochschild homology and integral \(p\)-adic Hodge theory

  • Bhargav BhattEmail author
  • Matthew Morrow
  • Peter Scholze
Article
  • 11 Downloads

Abstract

In mixed characteristic and in equal characteristic \(p\) we define a filtration on topological Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic \(K\)-theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex \(A\Omega\) constructed in our previous work, and in equal characteristic \(p\) to crystalline cohomology. Our construction of the filtration on \(\mathrm{THH}\) is via flat descent to semiperfectoid rings.

As one application, we refine the construction of the \(A\Omega \)-complex by giving a cohomological construction of Breuil–Kisin modules for proper smooth formal schemes over \(\mathcal {O}_{K}\), where \(K\) is a discretely valued extension of \(\mathbf {Q}_{p}\) with perfect residue field. As another application, we define syntomic sheaves \(\mathbf {Z}_{p}(n)\) for all \(n\geq 0\) on a large class of \(\mathbf {Z}_{p}\)-algebras, and identify them in terms of \(p\)-adic nearby cycles in mixed characteristic, and in terms of logarithmic de Rham-Witt sheaves in equal characteristic \(p\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ant18]
    B. Antieau, Periodic cyclic homology and derived de Rham cohomology, arXiv:1808.05246.
  2. [Avr99]
    L. L. Avramov, Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology, Ann. Math. (2), 150 (1999), 455–487. MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BBD82]
    A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I, Luminy, 1981, Astérisque, vol. 100, pp. 5–171, Soc. Math. France, Paris, 1982. Google Scholar
  4. [Bei87]
    A. A. Beilinson, On the derived category of perverse sheaves, in \(K\) -theory, arithmetic and geometry, Moscow, 1984–1986, Lecture Notes in Math., vol. 1289, pp. 27–41, Springer, Berlin, 1987. CrossRefGoogle Scholar
  5. [Ber74]
    P. Berthelot, Cohomologie cristalline des schémas de caractéristique \(p>0\), Lecture Notes in Mathematics, vol. 407, Springer, Berlin, 1974. zbMATHGoogle Scholar
  6. [Bha12a]
    B. Bhatt, Completions and derived de Rham cohomology, 2012, arXiv:1207.6193.
  7. [Bha12b]
    B. Bhatt, \(p\)-adic derived de Rham cohomology, 2012, arXiv:1204.6560.
  8. [BHM93]
    M. Bökstedt, W. C. Hsiang and I. Madsen, The cyclotomic trace and algebraic \(K\)-theory of spaces, Invent. Math., 111 (1993), 465–539. MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BMS18]
    B. Bhatt, M. Morrow and P. Scholze, Integral \(p\)-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci., 128 (2018), 219–397, MR 3905467. MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Bök85a]
    M. Bökstedt, Topological Hochschild homology, Bielefeld preprint, 1985. Google Scholar
  11. [Bök85b]
    M. Bökstedt, Topological Hochschild homology of \(\mathbf {Z}\) and \(\mathbf {Z}/p\), Bielefeld preprint, 1985. Google Scholar
  12. [Bre00]
    C. Breuil, Groupes \(p\)-divisibles, groupes finis et modules filtrés, Ann. Math. (2), 152 (2000), 489–549. MathSciNetCrossRefzbMATHGoogle Scholar
  13. [BS]
    B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation. Google Scholar
  14. [BS15]
    B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque, 369 (2015), 99–201. zbMATHGoogle Scholar
  15. [BS17]
    B. Bhatt and P. Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math., 209 (2017), 329–423. MathSciNetCrossRefzbMATHGoogle Scholar
  16. [CL19]
    C. Bryden and T. Liu, Breuil-Kisin modules via crystalline cohomology, Trans. Am. Math. Soc., 371 (2019), 1199–1230, MR 3885176. MathSciNetzbMATHGoogle Scholar
  17. [CMM18]
    D. Clausen, A. Mathew and M. Morrow, \(K\)-theory and topological cyclic homology of Henselian pairs, arXiv:1803.10897.
  18. [CN17]
    P. Colmez and W. Nizioł, Syntomic complexes and \(p\)-adic nearby cycles, Invent. Math., 208 (2017), 1–108. MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Del71]
    P. Deligne, Théorie de Hodge. II, Publ. Math. IHÉS, 40 (1971), 5–57, MR 0498551. CrossRefzbMATHGoogle Scholar
  20. [Dri18]
    V. Drinfeld, A Stacky approach to crystals, 2018, arXiv:1810.11853.
  21. [FF18]
    L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge \(p\) -adique, vol. 406, Société Mathématique de France (SMF), Paris, 2018 (French). zbMATHGoogle Scholar
  22. [FJ13]
    J.-M. Fontaine and U. Jannsen, Frobenius gauges and a new theory of \(p\)-torsion sheaves in characteristic \(p\). I, 2013, arXiv:1304.3740.
  23. [FM87]
    J.-M. Fontaine and W. Messing, \(p\)-adic periods and \(p\)-adic étale cohomology, in Current trends in arithmetical algebraic geometry, Arcata, Calif., 1985, Contemp. Math., vol. 67, pp. 179–207, Amer. Math. Soc., Providence, 1987. CrossRefGoogle Scholar
  24. [Fon94]
    J.-M. Fontaine, Exposé II: Les corps des périodes \(p\)-adiques. Avec un appendice par Pierre Colmez: Le nombres algébriques sont denses dans \(B_{dR}^{+}\), in Périodes \(p\) -adiques. Séminaire du Bures-sur-Yvette, France, 1988, pp. 59–111, Société Mathématique de France, Paris, 1994, appendix 103–111 (French). Google Scholar
  25. [FS02]
    E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic \(K\)-theory to motivic cohomology, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 773–875. MathSciNetCrossRefzbMATHGoogle Scholar
  26. [GDK]
    P. Deligne and N. Katz, Groupes de Monodromie en Géométrie Algébrique (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II)), Lecture Notes in Mathematics, vol. 340, Springer, Berlin, 1973, 438pp., MR 0354657. CrossRefGoogle Scholar
  27. [GH99]
    T. Geisser and L. Hesselholt, Topological cyclic homology of schemes, in Algebraic \(K\) -theory. Proceedings of an AMS-IMS-SIAM summer research conference, Seattle, WA, USA, July 13–24, 1997, pp. 41–87, American Mathematical Society, Providence, 1999. Google Scholar
  28. [GH06]
    T. Geisser and L. Hesselholt, The de Rham-Witt complex and \(p\)-adic vanishing cycles, J. Am. Math. Soc., 19 (2006), 1–36. MathSciNetCrossRefzbMATHGoogle Scholar
  29. [GP18]
    O. Gwilliam and D. Pavlov, Enhancing the filtered derived category, J. Pure Appl. Algebra, 222 (2018), 3621–3674, MR 3806745. MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Hes96]
    L. Hesselholt, On the \(p\)-typical curves in Quillen’s \(K\)-theory, Acta Math., 177 (1996), 1–53. MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Hes06]
    L. Hesselholt, On the topological cyclic homology of the algebraic closure of a local field, in An Alpine anthology of homotopy theory, Contemp. Math., vol. 399, pp. 133–162, Amer. Math. Soc., Providence, 2006. CrossRefGoogle Scholar
  32. [Hes18]
    L. Hesselholt, Topological Hochschild homology and the Hasse-Weil zeta function, in An Alpine Bouquet of algebraic topology, Contemp. Math., vol. 708, pp. 157–180, Amer. Math. Soc., Providence, 2018, MR 3807755. CrossRefGoogle Scholar
  33. [HM97]
    L. Hesselholt and I. Madsen, On the \(K\)-theory of finite algebras over Witt vectors of perfect fields, Topology, 36 (1997), 29–101. MathSciNetCrossRefzbMATHGoogle Scholar
  34. [HM03]
    L. Hesselholt and I. Madsen, On the \(K\)-theory of local fields, Ann. Math. (2), 158 (2003), 1–113. MathSciNetCrossRefzbMATHGoogle Scholar
  35. [Hoy15]
    M. Hoyois, The fixed points of the circle action on Hochschild homology, 2015, arXiv:1506.07123.
  36. [Ill71]
    L. Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239, Springer, Berlin, 1971. zbMATHGoogle Scholar
  37. [Ill79]
    L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4), 12 (1979), 501–661. CrossRefzbMATHGoogle Scholar
  38. [IR83]
    L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, 57 (1983), 73–212. CrossRefzbMATHGoogle Scholar
  39. [Kal18]
    D. Kaledin, Co-periodic cyclic homology, Adv. Math., 334 (2018), 81–150, MR 3828734. MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Kat87]
    K. Kato, On \(p\)-adic vanishing cycles (application of ideas of Fontaine-Messing), in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, pp. 207–251, North-Holland, Amsterdam, 1987. Google Scholar
  41. [Kis06]
    M. Kisin, Crystalline representations and \(F\)-crystals, in Algebraic geometry and number theory, Progr. Math., vol. 253, pp. 459–496, Birkhäuser Boston, Boston, 2006. CrossRefGoogle Scholar
  42. [Lod92]
    J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer, Berlin, 1992, Appendix E by María O. Ronco. zbMATHGoogle Scholar
  43. [Lur09]
    J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, 2009. zbMATHGoogle Scholar
  44. [Lur18a]
    J. Lurie, Higher algebra, 2018, http://www.math.harvard.edu/~lurie/. Google Scholar
  45. [Lur18b]
    J. Lurie, Spectral algebraic geometry, 2018, http://www.math.harvard.edu/~lurie/. Google Scholar
  46. [Mil76]
    J. S. Milne, Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér. (4), 9 (1976), 171–201. MathSciNetCrossRefzbMATHGoogle Scholar
  47. [Mor18]
    M. Morrow, \(p\)-adic vanishing cycles as Frobenius-fixed points, arXiv:1802.03317.
  48. [NS18]
    T. Nikolaus and P. Scholze, On topological cyclic homology, Acta Math., 221 (2018), 203–409 (English). MathSciNetzbMATHGoogle Scholar
  49. [Nyg81]
    N. O. Nygaard, Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér. (4), 14 (1981), 369–401. MathSciNetCrossRefzbMATHGoogle Scholar
  50. [OB12]
    N. Ojeda Baer, Towards the cohomological construction of Breuil-Kisin modules, 63, Thesis (Ph.D.), The University of Chicago, MR 3054898. Google Scholar
  51. [Qui70]
    D. Quillen, On the (co-)homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968), pp. 65–87, Amer. Math. Soc., Providence, 1970. CrossRefGoogle Scholar
  52. [Sat07]
    K. Sato, \(p\)-adic étale Tate twists and arithmetic duality, Ann. Sci. Éc. Norm. Supér. (4), 40 (2007), 519–588, with an appendix by Kei Hagihara. CrossRefzbMATHGoogle Scholar
  53. [Sch94]
    P. Schneider, \(p\)-adic points of motives, in Motives, Seattle, WA, 1991, Proc. Sympos. Pure Math., vol. 55, pp. 225–249, Amer. Math. Soc., Providence, 1994. CrossRefGoogle Scholar
  54. [Shu61]
    U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. Éc. Norm. Supér. (3), 78 (1961), 163–209. CrossRefzbMATHGoogle Scholar
  55. [Sta18]
    The Stacks Project Authors, Stacks Project, 2018, http://stacks.math.columbia.edu.
  56. [SW13]
    P. Scholze and J. Weinstein, Moduli of \(p\)-divisible groups, Camb. J. Math., 1 (2013), 145–237. MathSciNetCrossRefzbMATHGoogle Scholar
  57. [Tsa98]
    S. Tsalidis, Topological Hochschild homology and the homotopy descent problem, Topology, 37 (1998), 913–934. MathSciNetCrossRefzbMATHGoogle Scholar
  58. [Tsu99]
    T. Tsuji, \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., 137 (1999), 233–411. MathSciNetCrossRefzbMATHGoogle Scholar
  59. [Yek18]
    A. Yekutieli, Flatness and completion revisited, Algebr. Represent. Theory, 21 (2018), 717–736, MR 3826724. MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.CNRS and IMJ-PRGSorbonne UniversityParisFrance
  3. 3.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations