Advertisement

Publications mathématiques de l'IHÉS

, Volume 128, Issue 1, pp 1–119 | Cite as

Measure concentration and the weak Pinsker property

  • Tim AustinEmail author
Article

Abstract

Let \((X,\mu)\) be a standard probability space. An automorphism \(T\) of \((X,\mu)\) has the weak Pinsker property if for every \(\varepsilon > 0\) it has a splitting into a direct product of a Bernoulli shift and an automorphism of entropy less than \(\varepsilon \). This property was introduced by Thouvenot, who asked whether it holds for all ergodic automorphisms.

This paper proves that it does. The proof actually gives a more general result. Firstly, it gives a relative version: any factor map from one ergodic automorphism to another can be enlarged by arbitrarily little entropy to become relatively Bernoulli. Secondly, using some facts about relative orbit equivalence, the analogous result holds for all free and ergodic measure-preserving actions of a countable amenable group.

The key to this work is a new result about measure concentration. Suppose now that \(\mu\) is a probability measure on a finite product space \(A^{n}\), and endow this space with its Hamming metric. We prove that \(\mu\) may be represented as a mixture of other measures in which (i) most of the weight in the mixture is on measures that exhibit a strong kind of concentration, and (ii) the number of summands is bounded in terms of the difference between the Shannon entropy of \(\mu\) and the combined Shannon entropies of its marginals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR, 128 (1959), 647–650. MathSciNetzbMATHGoogle Scholar
  2. 2.
    R. Ahlswede, P. Gács and J. Körner, Bounds on conditional probabilities with applications in multi-user communication, Z. Wahrscheinlichkeitstheor. Verw. Geb., 34 (1976), 157–177. MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. Aida, T. Masuda and I. Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, J. Funct. Anal., 126 (1994), 83–101. MathSciNetzbMATHGoogle Scholar
  4. 4.
    N. Avni, Entropy theory for cross-sections, Geom. Funct. Anal., 19 (2010), 1515–1538. MathSciNetzbMATHGoogle Scholar
  5. 5.
    P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. zbMATHGoogle Scholar
  6. 6.
    S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163 (1999), 1–28. MathSciNetzbMATHGoogle Scholar
  7. 7.
    B. Bollobás, Modern Graph Theory, Springer, Berlin, 1998. zbMATHGoogle Scholar
  8. 8.
    L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Am. Math. Soc., 23 (2010), 217–245. MathSciNetzbMATHGoogle Scholar
  9. 9.
    F. R. K. Chung, R. L. Graham, P. Frankl and J. B. Shearer, Some intersection theorems for ordered sets and graphs, J. Comb. Theory, Ser. A, 43 (1986), 23–37. MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergod. Theory Dyn. Syst., 1 (1982), 431–450, 1981. MathSciNetzbMATHGoogle Scholar
  11. 11.
    T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley–Interscience, Hoboken, 2006. zbMATHGoogle Scholar
  12. 12.
    G. Crooks, On measures of entropy and information. Technical note, available online at threeplusone.com/on_information.pdf.
  13. 13.
    I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hung., 2 (1967), 299–318. MathSciNetzbMATHGoogle Scholar
  14. 14.
    I. Csiszár, Sanov property, generalized \(I\)-projection and a conditional limit theorem, Ann. Probab., 12 (1984), 768–793. MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. I. Danilenko and K. K. Park, Generators and Bernoullian factors for amenable actions and cocycles on their orbits, Ergod. Theory Dyn. Syst., 22 (2002), 1715–1745. MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. Dembo, Information inequalities and concentration of measure, Ann. Probab., 25 (1997), 927–939. MathSciNetzbMATHGoogle Scholar
  17. 17.
    R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge Univ. Press, Cambridge, 2002, revised reprint of the 1989 original. zbMATHGoogle Scholar
  18. 18.
    D. Ellis, E. Friedgut, G. Kindler and A. Yehudayoff, Geometric stability via information theory, Discrete Anal., 10 (2016), 28. MathSciNetzbMATHGoogle Scholar
  19. 19.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3rd ed., Wiley, New York, 1968. zbMATHGoogle Scholar
  20. 20.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd ed., Wiley, New York, 1971. zbMATHGoogle Scholar
  21. 21.
    A. Fieldsteel, Stability of the weak Pinsker property for flows, Ergod. Theory Dyn. Syst., 4 (1984), 381–390. MathSciNetzbMATHGoogle Scholar
  22. 22.
    H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 31 (1977), 204–256. zbMATHGoogle Scholar
  23. 23.
    W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math., 177 (1996), 113–161. MathSciNetzbMATHGoogle Scholar
  24. 24.
    W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal., 7 (1997), 322–337. MathSciNetzbMATHGoogle Scholar
  25. 25.
    W. T. Gowers, Rough structure and classification, in Geom. Funct. Anal., Special Volume, Part I (GAFA 2000, Tel Aviv, 1999), pp. 79–117, 2000. Google Scholar
  26. 26.
    N. Gozlan and C. Léonard, Transport inequalities. A survey, Markov Process. Relat. Fields, 16 (2010), 635–736. MathSciNetzbMATHGoogle Scholar
  27. 27.
    M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., 1 (1999), 109–197. MathSciNetzbMATHGoogle Scholar
  28. 28.
    M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, 2nd ed., Birkhäuser, Boston, 2001. Google Scholar
  29. 29.
    Y. Gutman and M. Hochman, On processes which cannot be distinguished by finite observation, Isr. J. Math., 164 (2008), 265–284. MathSciNetzbMATHGoogle Scholar
  30. 30.
    P. R. Halmos, Lectures on Ergodic Theory, Chelsea, New York, 1960. zbMATHGoogle Scholar
  31. 31.
    T. S. Han, Linear dependence structure of the entropy space, Inf. Control, 29 (1975), 337–368. MathSciNetzbMATHGoogle Scholar
  32. 32.
    T. S. Han, Nonnegative entropy measures of multivariate symmetric correlations, Inf. Control, 36 (1978), 133–156. MathSciNetzbMATHGoogle Scholar
  33. 33.
    W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., 58 (1963), 13–30. MathSciNetzbMATHGoogle Scholar
  34. 34.
    C. Hoffman, The behavior of Bernoulli shifts relative to their factors, Ergod. Theory Dyn. Syst., 19 (1999), 1255–1280. MathSciNetzbMATHGoogle Scholar
  35. 35.
    S. Kalikow, Non-intersecting splitting \(\sigma\)-algebras in a non-Bernoulli transformation, Ergod. Theory Dyn. Syst., 32 (2012), 691–705. MathSciNetzbMATHGoogle Scholar
  36. 36.
    S. Kalikow and R. McCutcheon, An Outline of Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 122, Cambridge Univ. Press, Cambridge, 2010. zbMATHGoogle Scholar
  37. 37.
    S. A. Kalikow, \(T,T^{-1}\) transformation is not loosely Bernoulli, Ann. Math. (2), 115 (1982), 393–409. MathSciNetzbMATHGoogle Scholar
  38. 38.
    L. V. Kantorovich, On a problem of Monge, Zap. Nauč. Semin. POMI, 312 (2004), 15–16. MathSciNetGoogle Scholar
  39. 39.
    L. V. Kantorovich and G. v. Rubinshtein, On a functional space and certain extremum problems, Dokl. Akad. Nauk SSSR, 115 (1957), 1058–1061. MathSciNetzbMATHGoogle Scholar
  40. 40.
    L. V. Kantorovitch, On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, 37 (1942), 199–201. MathSciNetzbMATHGoogle Scholar
  41. 41.
    A. Katok, Fifty years of entropy in dynamics: 1958–2007, J. Mod. Dyn., 1 (2007), 545–596. MathSciNetzbMATHGoogle Scholar
  42. 42.
    J. H. B. Kemperman, On the optimum rate of transmitting information, in Proc. Int. Sympos. on Probability and Information Theory (McMaster Univ., Hamilton, ON, 1968), pp. 126–169, Springer, Berlin, 1969. Google Scholar
  43. 43.
    J. C. Kieffer, A direct proof that VWB processes are closed in the \(\bar {d}\)-metric, Isr. J. Math., 41 (1982), 154–160. MathSciNetzbMATHGoogle Scholar
  44. 44.
    J. C. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Ann. Probab., 12 (1984), 204–211. MathSciNetzbMATHGoogle Scholar
  45. 45.
    A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958), 861–864. MathSciNetzbMATHGoogle Scholar
  46. 46.
    A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR, 124 (1959), 754–755. MathSciNetzbMATHGoogle Scholar
  47. 47.
    W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Am. Math. Soc., 149 (1970), 453–464. MathSciNetzbMATHGoogle Scholar
  48. 48.
    S. Kullback, Certain inequalities in information theory and the Cramér–Rao inequality, Ann. Math. Stat., 25 (1954), 745–751. MathSciNetzbMATHGoogle Scholar
  49. 49.
    S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Theory, T–13 (1967), 126. Google Scholar
  50. 50.
    S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86. MathSciNetzbMATHGoogle Scholar
  51. 51.
    M. Ledoux, Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter, J. Math. Kyoto Univ., 35 (1995), 211–220. MathSciNetzbMATHGoogle Scholar
  52. 52.
    M. Ledoux, On Talagrand’s deviation inequalities for product measures, ESAIM Probab. Stat., 1 (1995), 63–87. MathSciNetzbMATHGoogle Scholar
  53. 53.
    M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, Am. Math. Soc., Providence, 2001. zbMATHGoogle Scholar
  54. 54.
    V. L. Levin, General Monge–Kantorovich problem and its applications in measure theory and mathematical economics, in Functional Analysis, Optimization, and Mathematical Economics, pp. 141–176, Oxford Univ. Press, New York, 1990. Google Scholar
  55. 55.
    E. Lindenstrauss, Y. Peres and W. Schlag, Bernoulli convolutions and an intermediate value theorem for entropies of \(K\)-partitions, J. Anal. Math., 87 (2002), 337–367, dedicated to the memory of Thomas H. Wolff. MathSciNetzbMATHGoogle Scholar
  56. 56.
    N. Linial, A. Samorodnitsky and A. Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents, Combinatorica, 20 (2000), 545–568. MathSciNetzbMATHGoogle Scholar
  57. 57.
    K. Marton, A simple proof of the blowing-up lemma, IEEE Trans. Inf. Theory, 32 (1986), 445–446. MathSciNetzbMATHGoogle Scholar
  58. 58.
    K. Marton, Bounding \(\overline{d}\)-distance by informational divergence: a method to prove measure concentration, Ann. Probab., 24 (1996), 857–866. MathSciNetzbMATHGoogle Scholar
  59. 59.
    K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal., 6 (1996), 556–571. MathSciNetzbMATHGoogle Scholar
  60. 60.
    K. Marton, Measure concentration for a class of random processes, Probab. Theory Relat. Fields, 110 (1998), 427–439. MathSciNetzbMATHGoogle Scholar
  61. 61.
    K. Marton and P. C. Shields, The positive-divergence and blowing-up properties, Isr. J. Math., 86 (1994), 331–348. MathSciNetzbMATHGoogle Scholar
  62. 62.
    K. Marton and P. C. Shields, How many future measures can there be? Ergod. Theory Dyn. Syst., 22 (2002), 257–280. MathSciNetzbMATHGoogle Scholar
  63. 63.
    C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics (Norwich, 1989). London Math. Soc. Lecture Note Ser., vol. 141, pp. 148–188, Cambridge Univ. Press, Cambridge, 1989. Google Scholar
  64. 64.
    W. J. McGill, Multivariate information transmission, Trans. IRE Profess. Group Inf. Theory, 4 (1954), 93–111. MathSciNetGoogle Scholar
  65. 65.
    V. D. Milman, The heritage of P. Lévy in geometrical functional analysis, Astérisque, 157–158 (1988), 273–301. zbMATHGoogle Scholar
  66. 66.
    V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Mathematics, vol. 1200, Springer, Berlin, 1986, with an appendix by M. Gromov. zbMATHGoogle Scholar
  67. 67.
    D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math., 4 (1970), 337–352, 1970. MathSciNetzbMATHGoogle Scholar
  68. 68.
    D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Adv. Math., 5 (1970), 339–348, 1970. MathSciNetzbMATHGoogle Scholar
  69. 69.
    D. Ornstein, Newton’s laws and coin tossing, Not. Am. Math. Soc., 60 (2013), 450–459. MathSciNetzbMATHGoogle Scholar
  70. 70.
    D. S. Ornstein, An example of a Kolmogorov automorphism that is not a Bernoulli shift, Adv. Math., 10 (1973), 49–62. MathSciNetzbMATHGoogle Scholar
  71. 71.
    D. S. Ornstein, A \(K\) automorphism with no square root and Pinsker’s conjecture, Adv. Math., 10 (1973), 89–102. MathSciNetzbMATHGoogle Scholar
  72. 72.
    D. S. Ornstein, A mixing transformation for which Pinsker’s conjecture fails, Adv. Math., 10 (1973), 103–123. MathSciNetzbMATHGoogle Scholar
  73. 73.
    D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Mathematical Monographs, vol. 5, Yale Univ. Press, New Haven, 1974 zbMATHGoogle Scholar
  74. 74.
    D. S. Ornstein, Factors of Bernoulli shifts, Isr. J. Math., 21 (1975), 145–153, 1974. MathSciNetzbMATHGoogle Scholar
  75. 75.
    D. S. Ornstein and P. C. Shields, An uncountable family of \(K\)-automorphisms, Adv. Math., 10 (1973), 63–88. MathSciNetzbMATHGoogle Scholar
  76. 76.
    D. S. Ornstein and B. Weiss, Every transformation is bilaterally deterministic, Isr. J. Math., 21 (1975), 154–158, 1974. MathSciNetzbMATHGoogle Scholar
  77. 77.
    D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1–141. MathSciNetzbMATHGoogle Scholar
  78. 78.
    K. Petersen and J.-P. Thouvenot, Tail fields generated by symbol counts in measure-preserving systems, Colloq. Math., 101 (2004), 9–23. MathSciNetzbMATHGoogle Scholar
  79. 79.
    M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Sov. Math. Dokl., 1 (1960), 937–938. MathSciNetzbMATHGoogle Scholar
  80. 80.
    M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964. zbMATHGoogle Scholar
  81. 81.
    J. Radhakrishnan, Entropy and counting, in J. Mishra (ed.) Computational Mathematics, Modelling and Applications, IIT Kharagpur, Golden Jubilee Volume, pp. 146–168, Narosa, New York, 2003, available online via www.tcs.tifr.res.in/~jaikumar/Papers. Google Scholar
  82. 82.
    M. Rahe, Relatively finitely determined implies relatively very weak bernoulli, Can. J. Math., 30 (1978), 531–548. MathSciNetzbMATHGoogle Scholar
  83. 83.
    V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Usp. Mat. Nauk, 22 (1967), 3–56. MathSciNetGoogle Scholar
  84. 84.
    D. J. Rudolph, If a two-point extension of a Bernoulli shift has an ergodic square, then it is Bernoulli, Isr. J. Math., 30 (1978), 159–180. MathSciNetzbMATHGoogle Scholar
  85. 85.
    D. J. Rudolph, The second centralizer of a Bernoulli shift is just its powers, Isr. J. Math., 29 (1978), 167–178. MathSciNetzbMATHGoogle Scholar
  86. 86.
    D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. Math. (2), 151 (2000), 1119–1150. MathSciNetzbMATHGoogle Scholar
  87. 87.
    P.-M. Samson, Concentration of measure inequalities for Markov chains and \(\Phi\)-mixing processes, Ann. Probab., 28 (2000), 416–461. MathSciNetzbMATHGoogle Scholar
  88. 88.
    I. N. Sanov, On the probability of large deviations of random variables, in Select. Transl. Math. Statist. and Probability, Vol. 1, pp. 213–244, Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I., 1961. Google Scholar
  89. 89.
    B. Seward, Krieger’s finite generator theorem for actions of countable groups I. arXiv:1405.3604.
  90. 90.
    P. Shields, The Theory of Bernoulli Shifts, Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago, 1973. zbMATHGoogle Scholar
  91. 91.
    P. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics, vol. 13, Am. Math. Soc., Providence, 1996. zbMATHGoogle Scholar
  92. 92.
    J. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR, 124 (1959), 768–771. MathSciNetzbMATHGoogle Scholar
  93. 93.
    J. G. Sinaĭ, On a weak isomorphism of transformations with invariant measure, Mat. Sb. (N.S.), 63 (1964), 23–42. MathSciNetGoogle Scholar
  94. 94.
    M. Smorodinsky and J.-P. Thouvenot, Bernoulli factors that span a transformation, Isr. J. Math., 32 (1979), 39–43. MathSciNetzbMATHGoogle Scholar
  95. 95.
    E. Szemerédi, On sets of integers containing no \(k\) elements in arithmetic progression, Acta Arith., 27 (1975), 199–245. MathSciNetzbMATHGoogle Scholar
  96. 96.
    E. Szemerédi, Regular partitions of graphs, in Problèmes combinatoires et théorie des graphes, (Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 399–401, CNRS, Paris, 1978, Google Scholar
  97. 97.
    M. Talagrand, On Russo’s approximate zero-one law, Ann. Probab., 22 (1994), 1576–1587. MathSciNetzbMATHGoogle Scholar
  98. 98.
    M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math., 81 (1995), 73–205. MathSciNetzbMATHGoogle Scholar
  99. 99.
    M. Talagrand, A new look at independence, Ann. Probab., 24 (1996), 1–34. MathSciNetzbMATHGoogle Scholar
  100. 100.
    M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., 6 (1996), 587–600. MathSciNetzbMATHGoogle Scholar
  101. 101.
    T. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete Math., 1 (2006), 8–28. MathSciNetzbMATHGoogle Scholar
  102. 102.
    T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, in International Congress of Mathematicians, vol. I, pp. 581–608, Eur. Math. Soc., Zürich, 2007. Google Scholar
  103. 103.
    T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006. zbMATHGoogle Scholar
  104. 104.
    J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Isr. J. Math., 21 (1975), 177–207. MathSciNetzbMATHGoogle Scholar
  105. 105.
    J.-P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Isr. J. Math., 21 (1975), 208–214, 1974. MathSciNetzbMATHGoogle Scholar
  106. 106.
    J.-P. Thouvenot, On the stability of the weak Pinsker property, Isr. J. Math., 27 (1977), 150–162. MathSciNetzbMATHGoogle Scholar
  107. 107.
    J.-P. Thouvenot, Entropy, isomorphism and equivalence in ergodic theory, in Handbook of Dynamical Systems, vol. 1A, pp. 205–238, North-Holland, Amsterdam, 2002. Google Scholar
  108. 108.
    J.-P. Thouvenot, Two facts concerning the transformations which satisfy the weak Pinsker property, Ergod. Theory Dyn. Syst., 28 (2008), 689–695. MathSciNetzbMATHGoogle Scholar
  109. 109.
    J.-P. Thouvenot, Relative spectral theory and measure-theoretic entropy of Gaussian extensions, Fundam. Math., 206 (2009), 287–298. MathSciNetzbMATHGoogle Scholar
  110. 110.
    S. Verdú and T. Weissman, The information lost in erasures, IEEE Trans. Inf. Theory, 54 (2008), 5030–5058. MathSciNetzbMATHGoogle Scholar
  111. 111.
    A. M. Vershik, Dynamic theory of growth in groups: entropy, boundaries, examples, Usp. Mat. Nauk, 55 (2000), 59–128. MathSciNetzbMATHGoogle Scholar
  112. 112.
    A. M. Vershik, The Kantorovich metric: the initial history and little-known applications, Zap. Nauč. Semin. POMI, 312 (2004), 69–85. Google Scholar
  113. 113.
    A. M. Vershik, Dynamics of metrics in measure spaces and their asymptotic invariants, Markov Process. Relat. Fields, 16 (2010), 169–184. MathSciNetzbMATHGoogle Scholar
  114. 114.
    R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Univ. Press (in press), draft available online at https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html.
  115. 115.
    S. Watanabe, Information theoretical analysis of multivariate correlation, IBM J. Res. Dev., 4 (1960), 66–82. MathSciNetzbMATHGoogle Scholar
  116. 116.
    D. Welsh, Codes and Cryptography, Oxford Science Publications, Clarendon/Oxford Univ. Press, New York, 1988. zbMATHGoogle Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations