Publications mathématiques de l'IHÉS

, Volume 119, Issue 1, pp 127–216 | Cite as

Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence



We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following a proposal of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of \(\widehat {\Gamma }\)-integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.



weighted homogeneous polynomial (Section 1.1)


Calabi-Yau hypersurface defined by W in \(\mathbf {P}(\underline {w})\) (Section 1.1)


the group of d-th roots of unity


state space (\(H(W,\boldsymbol {\mu }_{d}) \text{\ or\ } H_{{\operatorname {CR}}}(X_{W})\), Sections 2.1.1, 2.2.1)


narrow/ambient part (Section 2.3.1)


broad/primitive part (Section 2.3.1)


linear co-ordinates on the state space associated to a basis {Ti} (Sections 2.3, 2.4, 3.5.2)

\(\widehat {\Gamma }\)

Gamma class (Section 2.4.4)

\(\overline {H}\)

state space of twisted theories (\(H_{{\operatorname {ext}}}\text{\ or\ } H_{{\operatorname {CR}}}( \mathbf {P}(\underline {w}))\), Section 3.5.2)

\(\mathcal {M}\)

global Kähler moduli space (P(1,d)∖{0,vc}, Section 5.1)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Abramovich, T. Graber, and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., 130 (2008), 1337–1398. arXiv:math/0603151. CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Am. Math. Soc., 15 (2002), 27–75 (electronic). CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    P. S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in String Theory, pp. 1–152, World Scientific Publishing, Hackensack, 2005. CrossRefGoogle Scholar
  4. 4.
    V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., 3 (1994), 493–535. MATHMathSciNetGoogle Scholar
  5. 5.
    L. A. Borisov and R. Paul Horja, Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., 207 (2006), 876–927. CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    L. A. Borisov and R. Paul Horja, On the better-behaved version of the GKZ hypergeometric system. arXiv:1011.5720.
  7. 7.
    R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 1986.
  8. 8.
    R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., 88 (1987), 165–182. CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. Canonaco and R. L. Karp, Derived autoequivalences and a weighted Beilinson resolution, J. Geom. Phys., 58 (2008), 743–760. CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    W. Chen, Y. Ruan, Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, pp. 25–85, Am. Math. Soc., Providence, 2002. CrossRefGoogle Scholar
  11. 11.
    A. Chiodo, Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin), Ann. Inst. Fourier (Grenoble), 58 (2008), 1635–1689. arXiv:math.AG/0603687. CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    A. Chiodo and J. Nagel, in preparation. Google Scholar
  13. 13.
    A. Chiodo and Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., 182 (2010), 117–165. CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    A. Chiodo and Y. Ruan, LG/CY correspondence: the state space isomorphism, Adv. Math., 227 (2011), 2157–2188. arXiv:0908.0908. CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Annales de l’Institut Fourier, to appear.
  16. 16.
    A. Chiodo and D. Zvonkine, Twisted r-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., 13 (2009), 1335–1369. arXiv:0711.0339. CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., 147 (2009), 377–438. arXiv:math.AG/0702234. CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, in preparation. Google Scholar
  19. 19.
    T. Coates, A. Corti, Y.-P. Lee, and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math., 202 (2009), 139–193. CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    T. Coates, A. Gholampour, H. Iritani, Y. Jiang, P. Johnson, and C. Manolache, The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett. 19 (2012), 997–1005. arXiv:1202.2754. CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math. (2), 165 (2007), 15–53. CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    T. Dyckerhoff, Compact generators in categories of matrix factorizations. Duke Math. J., 159 (2011), 223–274. arXiv:0904.3413. CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., 260 (1980), 35–64. CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173–199, doi:10.1007/s002229900028. CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    H. Fan T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle. arXiv:0712.4025.
  26. 26.
    H. Fan T. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. 178 (2013), 1–106. arXiv:0712.4021v3. CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    I. M. Gelfand, A. V. Zelevinsky, and M. M. Kapranov, Hypergeometric functions and toral manifolds, Funkc. Anal. Prilozh., 23 (1989), 12–26 (Russian). Englih Transl: Funct. Anal. Appl. 23 (1989), 94–106. CrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Givental, A mirror theorem for toric complete intersections, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., vol. 160, pp. 141–175, Birkhäuser Boston, Boston, 1998. CrossRefGoogle Scholar
  29. 29.
    A. B. Givental, Symplectic geometry of Frobenius structures, in Frobenius Manifolds. Aspects Math., vol. E36, pp. 91–112, Vieweg, Wiesbaden, 2004. CrossRefGoogle Scholar
  30. 30.
    B. R. Greene, C. Vafa, and N. P. Warner, Calabi-Yau manifolds and renormalization group flows, Nucl. Phys. B, 324 (1989), 371–390. CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, Wiley, New York, 1994. Reprint of the 1978 original. CrossRefGoogle Scholar
  32. 32.
    M. A. Guest, Quantum cohomology via D-modules, Topology, 44 (2005), 263–281. CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    M. A. Guest and H. Sakai, Orbifold quantum D-modules associated to weighted projective spaces. arXiv:0810.4236.
  34. 34.
    M. Herbst, K. Hori, and D. C. Page, Phases of \(\mathcal{N}=2\) theories in 1+1 dimensions with boundary. arXiv:0803.2045.
  35. 35.
    C. Hertling, tt geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math., 555 (2003), 77–161. MATHMathSciNetGoogle Scholar
  36. 36.
    C. Hertling and Y. Manin, Unfoldings of meromorphic connections and a construction of Frobenius manifolds, in Frobenius Manifolds. Aspects Math., vol. E36, pp. 113–144, Vieweg, Wiesbaden, 2004. CrossRefGoogle Scholar
  37. 37.
    K. Hori and J. Walcher, F-term equations near Gepner points, J. High Energy Phys., 1 (2005), 008, 23 pp. (electronic). CrossRefMathSciNetGoogle Scholar
  38. 38.
    R. Paul Horja, Hypergeometric functions and mirror symmetry in toric varieties. arXiv:math/9912109.
  39. 39.
    S. Hosono, Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, in Mirror Symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, pp. 405–439, Am. Math. Soc., Providence, 2006. Google Scholar
  40. 40.
    H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math., 610 (2007), 29–69. MATHMathSciNetGoogle Scholar
  41. 41.
    H. Iritani, Quantum D-modules and generalized mirror transformations, Topology, 47 (2008), 225–276. CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222 (2009), 1016–1079. arXiv:0903.1463. CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    H. Iritani, Quantum cohomology and periods, Annales de l’Institut Fourier, to appear. arXiv:1101.4512.
  44. 44.
    L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, pp. 87–174, Am. Math. Soc., Providence, 2008. CrossRefGoogle Scholar
  45. 45.
    T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., 16 (1979), 151–159. MATHMathSciNetGoogle Scholar
  46. 46.
    M. Kontsevich, in Homological Algebra of Mirror Symmetry (Zürich, 1994), vol. 2, pp. 120–139, Birkhäuser, Basel, 1995. Google Scholar
  47. 47.
    M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., 164 (1994), 525–562. CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    A. Libgober, Chern classes and the periods of mirrors, Math. Res. Lett., 6 (1999), 141–149. CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, vol. 47, Am. Math. Soc., Providence, 1999. MATHGoogle Scholar
  50. 50.
    E. Mann and T. Mignon, Quantum D-modules for toric nef complete intersections. arXiv:1112.1552.
  51. 51.
    E. J. Martinec, Criticality, catastrophes, and compactifications, in Physics and Mathematics of Strings, pp. 389–433, World Scientific Publishing, Teaneck, 1990. CrossRefGoogle Scholar
  52. 52.
    D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 246 (2004), 240–262. Algebr. Geom. Metody, Svyazi i Prilozh (Russian, with Russian summary). English Transl.: Proc. Steklov Inst. Math. 3, 227–248 (2004). Google Scholar
  53. 53.
    D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, pp. 503–531, Birkhäuser Boston, Boston, 2009. CrossRefGoogle Scholar
  54. 54.
    R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque, 252 (1998), 307–340. Séminaire Bourbaki. Vol. 1997/98. MathSciNetGoogle Scholar
  55. 55.
    F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque, 130 (1985), 11–47 (French). Differential systems and singularities (Luminy, 1983). MathSciNetGoogle Scholar
  56. 56.
    A. Polishchuk and A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Duke Math. J., 161 (2012), 1863–1926. arXiv:1002.2116. CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    A. Polishchuk and A. Vaintrob, Matrix Factorizations and Cohomological Field Theory. arXiv:1105.2903.
  58. 58.
    A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York, 1986. Oxford Science Publications. MATHGoogle Scholar
  59. 59.
    T. Reichelt, A construction of Frobenius manifolds with logarithmic poles and applications, Commun. Math. Phys., 287 (2009), 1145–1187. CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    M. A. Rose, A reconstruction theorem for genus zero Gromov-Witten invariants of stacks, Am. J. Math., 130 (2008), 1427–1443. CrossRefMATHGoogle Scholar
  61. 61.
    K. Saito, The higher residue pairings \(K_{F}^{(k)}\) for a family of hypersurface singular points, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, pp. 441–463, Am. Math. Soc., Providence, 1983. CrossRefGoogle Scholar
  62. 62.
    E. Segal, Equivalence between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys., 304 (2011), 411–432. CrossRefMATHGoogle Scholar
  63. 63.
    P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108 (2001), 37–108. CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    J. Steenbrink, Intersection form for quasi-homogeneous singularities, Compos. Math., 34 (1977), 211–223. MATHMathSciNetGoogle Scholar
  65. 65.
    B. Toën, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, 18 (1999), 33–76. CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., 14 (2010), 1–81. CrossRefMathSciNetGoogle Scholar
  67. 67.
    C. Vafa and N. P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B, 218 (1989), 51–58. CrossRefMathSciNetGoogle Scholar
  68. 68.
    J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys., 46 (2005), 082305, 29. CrossRefMathSciNetGoogle Scholar
  69. 69.
    E. Witten, Phases of N=2 theories in two dimensions, Nucl. Phys. B, 403 (1993), 159–222. CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    E. Witten, Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity, Topological Models in Modern Mathematics, Publish or Perish, Stony Brook, New York, 1991. Google Scholar

Copyright information

© IHES and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Chiodo
    • 1
  • Hiroshi Iritani
    • 2
  • Yongbin Ruan
    • 3
  1. 1.Institut de Mathématiques de Jussieu, UMR 7586 CNRSUniversité Pierre et Marie CurieParis cedex 05France
  2. 2.Department of Mathematics, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations