Publications mathématiques de l'IHÉS

, Volume 111, Issue 1, pp 1–169

Le lemme fondamental pour les algèbres de Lie

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    A. Altman, A. Iarrobino, and S. Kleiman, Irreducibility of the compactified Jacobian, in Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 1–12. Google Scholar
  2. 2.
    J. Arthur, An introduction to the trace formula, in Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math. Proc., vol. 4, pp. 1–263, Am. Math. Soc., Providence, 2005. Google Scholar
  3. 3.
    M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 23–58. MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Beauville and Y. Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris, 320 (1995), 335–340. MATHMathSciNetGoogle Scholar
  5. 5.
    A. Beauville, M. Narasimhan, and S. Ramanan, Spectral curves and generalized theta divisor, J. Reine Angew. Math., 398 (1989), 169–179. MATHMathSciNetGoogle Scholar
  6. 6.
    V. Beilinson, A. Drinfeld, Opers, preprint. Google Scholar
  7. 7.
    A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Astérisque, 100 (1982). Google Scholar
  8. 8.
    R. Bezrukavnikov, The dimension of the fixed points set on affine flag manifolds, Math. Res. Lett., 3 (1996), 185–189. MATHMathSciNetGoogle Scholar
  9. 9.
    I. Biswas and S. Ramanan, Infinitesimal study of Hitchin pairs, J. Lond. Math. Soc., 49 (1994), 219–231. MATHMathSciNetGoogle Scholar
  10. 10.
    S. Bosch, W. Lutkebohmert, and M. Raynaud, Neron Models, Ergeb. der Math., vol. 21, Springer, Berlin, 1990. Google Scholar
  11. 11.
    N. Bourbaki, Groupes et algèbres de Lie, Masson, Paris, 1981, chapitres 4, 5 et 6. MATHGoogle Scholar
  12. 12.
    R. Carter, Finite Group of Lie Type, Wiley Classics Library. Google Scholar
  13. 13.
    C.-L. Chai and J.-K. Yu, Congruences of Néron models for tori and the Artin conductor, Ann. Math. (2), 154 (2001), 347–382. MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    L. Clozel, The fundamental lemma for stable base change, Duke Math. J., 61 (1990), 255–302. MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Cluckers and F. Loeser, Fonctions constructibles exponentielles, transformation de Fourier motivique et principe de transfert, C. R. Acad. Sci. Paris, 341 (2005), 741–746. MATHMathSciNetGoogle Scholar
  16. 16.
    J.-F. Dat, Lemme fondamental et endoscopie, une approche géométrique, Séminaire Bourbaki 940, novembre 2004. Google Scholar
  17. 17.
    O. Debarre, Théorèmes de connexité pour les produits d’espaces projectifs et les grassmanniennes, Am. J. Math., 118 (1996), 1347–1367. MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Deligne, La conjecture de Weil II, Publ. Math. I.H.E.S., 52 (1980), 137–252. MATHMathSciNetGoogle Scholar
  19. 19.
    P. Deligne, Décomposition dans la catégorie dérivée, in Motives, Proc. of Symp. in Pure Math., vol. 55.1, pp. 115–128, 1994. Google Scholar
  20. 20.
    P. Deligne, Communication privée, 2007. Google Scholar
  21. 21.
    M. Demazure and A. Grothendieck, Séminaire de géométrie algébrique du Bois-Marie 3. LNM, vols. 151, 152, 153, Springer. Google Scholar
  22. 22.
    S. Diaz and J. Harris, Ideals associated to Deformations of singular plane curves, Trans. Am. Math. Soc., 309 (1988), 433–468. MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Donagi and D. Gaitsgory, The gerb of Higgs bundles, Transform. Groups, 7 (2002), 109–153. MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Faltings, Stable G-bundles and projective connections, J. Algebraic Geom., 2 (1993), 507–568. MATHMathSciNetGoogle Scholar
  25. 25.
    B. Fantechi, L. Göttsche, and D. Van Straten, Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom., 8 (1999), 115–133. MATHMathSciNetGoogle Scholar
  26. 26.
    M. Goresky, R. Kottwitz, and R. MacPherson, Homology of affine Springer fiber in the unramified case, Duke Math. J., 121 (2004), 509–561. MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Goresky, R. Kottwitz, and R. MacPherson, Purity of equivalued affine Springer fibers, Represent. Theory, 10 (2006), 130–146. MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Goresky, R. Kottwitz, and R. MacPherson, Codimension of root valuation strata, preprint (2006). Google Scholar
  29. 29.
    A. Grothendieck, Groupes de monodromie en Géométrie algébrique (SGA 7 I), LNM, vol. 288, Springer. Google Scholar
  30. 30.
    A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV. Étude locale des schémas et de morphismes de schémas, Publ. Math. I.H.E.S. 20, 24, 28 et 32. Google Scholar
  31. 31.
    T. Hales, The fundamental lemma for Sp(4), Proc. Am. Math. Soc., 125 (1997), 301–308. MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    T. Hales, A statement of the fundamental lemma, in Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math. Proc., vol. 4, pp. 643–658, Am. Math. Soc., Providence, 2005. Google Scholar
  33. 33.
    J. Heinloth, Uniformization of \({\mathcal{G}}\)-bundles. A paraître dans Math. Ann. Google Scholar
  34. 34.
    N. Hitchin, Stable bundles and integrable connections, Duke Math. J., 54 (1987), 91–114. MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    D. Kazhdan, On lifting, in Lie Group Representations, II (College Park, Md., 1982/1983). Lecture Notes in Math., vol. 1041, pp. 209–249, Springer, Berlin, 1984. CrossRefGoogle Scholar
  36. 36.
    D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math., 62 (1988), 129–168. MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    S. Kleiman, Algebraic cycles and Weil conjectures, in Dix exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968. Google Scholar
  38. 38.
    B. Kostant, Lie group representations on polynomial rings, Am. J. Math., 85 (1963), 327–404. MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    R. Kottwitz, Orbital integrals on GL3, Am. J. Math., 102 (1980), 327–384. MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    R. Kottwitz, Unstable orbital integrals on SL(3), Duke Math. J., 48 (1981), 649–664. MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    R. Kottwitz, Stable trace formula : cuspidal tempered terms, Duke Math. J., 51 (1984), 611–650. MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    R. Kottwitz, Isocristal with additionnal structures, Compos. Math., 56 (1985), 201–220. MATHMathSciNetGoogle Scholar
  43. 43.
    R. Kottwitz, Base change for unit elements of Hecke algebras, Compos. Math., 60 (1986), 237–250. MathSciNetGoogle Scholar
  44. 44.
    R. Kottwitz, Stable trace formula : elliptic singular terms, Math. Ann., 275 (1986), 365–399. MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    R. Kottwitz, Shimura varieties and λ-adic representations, in Automorphic Forms, Shimura Varieties, and L -functions, Vol. I, Perspect. Math., vol. 10, pp. 161–209, Academic Press, Boston, 1990. Google Scholar
  46. 46.
    R. Kottwiz, Transfert factors for Lie algebra, Represent. Theory, 3 (1999), 127–138. CrossRefMathSciNetGoogle Scholar
  47. 47.
    J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J., 61 (1990), 519–530. MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    J.-P. Labesse, R. Langlands, L-indistinguishability for SL(2), Can. J. Math., 31 (1979), 726–785. MATHMathSciNetGoogle Scholar
  49. 49.
    R. Langlands, Base Change for GL(2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, 1980. MATHGoogle Scholar
  50. 50.
    R.P. Langlands, Les débuts d’une formule des traces stables, in Publications Mathématiques de l’Université Paris VII, vol. 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983. Google Scholar
  51. 51.
    G. Laumon, Fibres de Springer et Jacobiennes compactifiées, in Algebraic Geometry and Number Theory. Progr. Math., vol. 253, pp. 515–563, Birkhäuser Boston, Boston, 2006. CrossRefGoogle Scholar
  52. 52.
    G. Laumon, Sur le lemme fondamental pour les groupes unitaires, prépublication, arXiv :org/abs/math/0212245.
  53. 53.
    G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik, vol. 39, Springer, Berlin, 2000. MATHGoogle Scholar
  54. 54.
    G. Laumon and B. C. Ngô, Le lemme fondamental pour les groupes unitaires, Ann. Math., 168 (2008), 477–573. MATHCrossRefGoogle Scholar
  55. 55.
    P. Levy, Involutions of reductive Lie algebras in positive characteristic, Adv. Math., 210 (2007), 505–559. MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    D. Mumford, Abelian Varieties. Oxford University Press. Google Scholar
  57. 57.
    B. C. Ngô, Fibration de Hitchin et endoscopie, Inveut. Math, 164 (2006), 399–453. MATHCrossRefGoogle Scholar
  58. 58.
    B. C. Ngô, Fibration de Hitchin et structure endoscopique de la formule des traces. International Congress of Mathematicians, vol. II, pp. 1213–1225, Eur. Math. Soc., Zürich, 2006. Google Scholar
  59. 59.
    B. C. Ngô, Geometry of the Hitchin fibration. Livre en préparation. Google Scholar
  60. 60.
    B. C. Ngô, Decomposition theorem and abelian fibration. Article d’exposition pour le projet du livre disponible à l’adresse http://fa.institut.math.jussieu.fr/node/44.
  61. 61.
    Nitsure, Moduli space of semistable pairs on a curve, Proc. Lond. Math. Soc. (3), 62 (1991), 275–300. MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    T. Ono, On Tamagawa numbers, in Algebraic Groups and Discontinuous Subgroups, Proc. of Symp. in Pure Math, vol. 9, Am. Math. Soc., Providence, 1966. Google Scholar
  63. 63.
    M. Rapoport, A guide to the reduction of Shimura varieties in Automorphic forms. I, Astérisque, 298 (2005), 271–318. MathSciNetGoogle Scholar
  64. 64.
    M. Raynaud, Communication privée, 2004. Google Scholar
  65. 65.
    J. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Annals of Math. Studies, vol. 123, pp. 1–259, Princeton University Press, Princeton, 1990 MATHGoogle Scholar
  66. 66.
    M. Rosenlicht, Some basic theorems on algebraic groups, Am. J. Math., 78 (1956), 401–443. MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    H. Saito, Automorphic Forms and Algebraic Extensions of Number Fields (Department of Mathematics, Kyoto University), Lectures in Mathematics, vol. 8, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Google Scholar
  68. 68.
    M. Schöder, Inauguraldissertation, Mannheim 1993. Google Scholar
  69. 69.
    J.-P. Serre, Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, vol. VII, Hermann, Paris, 1959. MATHGoogle Scholar
  70. 70.
    J.-P. Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, vol. VIII, Hermann, Paris, 1962. MATHGoogle Scholar
  71. 71.
    D. Shelstad, Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Supér., 12 (1979). Google Scholar
  72. 72.
    N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology, 16 (1977), 203–204. MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    T. Springer, Some arithmetical results on semi-simple Lie algebras, Publ. Math. I.H.E.S., 33 (1966), 115–141. MathSciNetGoogle Scholar
  74. 74.
    T. Springer, Reductive groups, in Automorphic Forms, Representations, and L -functions, Proc. Symp. in Pure Math, vol. 33-1, Am. Math. Soc., Providence, 1997. Google Scholar
  75. 75.
    T. Springer and R. Steinberg, Conjugacy classes, in Seminar on Algebraic Groups and Related Finite Groups, Lectures Notes in Math., vol. 131, Springer, Berlin, 1970. Google Scholar
  76. 76.
    R. Steinberg, Lectures on Chevalley groups, Livre polycopié. Google Scholar
  77. 77.
    B. Teissier, Résolution simultanée – I. Famille de courbes, in M. Demazure, H. Pinkham, and B. Teissier (eds.), Séminaire sur les Singularités des Surfaces. LNM, vol. 777, Springer, Berlin, 1980. Google Scholar
  78. 78.
    F. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic p, Ann. Sci. École Norm. Supér. (4), 5 (1972), 217–240. MATHMathSciNetGoogle Scholar
  79. 79.
    J.-L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires : un lemme fondamental, Can. J. Math., 43 (1991), 852–896. MATHMathSciNetGoogle Scholar
  80. 80.
    J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compos. Math., 105 (1997), 153–236. MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque, 269. Google Scholar
  82. 82.
    J.-L. Waldspurger, Endoscopie et changement de caractéristique, Inst. Math. Jussieu 5 (2006), 423–525. MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    J.-L. Waldspurger, L’endoscopie tordue n’est pas si tordue, Mem. Am. Math. Soc. 194 (2008), x+261 MathSciNetGoogle Scholar
  84. 84.
    R. Weissauer, A special case of fundamental lemma I–IV, preprint Mannheim (1993). Google Scholar
  85. 85.
    D. Whitehouse, The twisted weighted fundamental lemma for the transfer of automorphic forms from GSp(4). Formes automorphes. II. Le cas du groupe GSp(4), Astérisque, 302 (2005), 291–436. MathSciNetGoogle Scholar

Copyright information

© IHES and Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Département de MathématiquesUniversité Paris-SudOrsayFrance

Personalised recommendations