Publications mathématiques

, Volume 107, Issue 1, pp 109–168 | Cite as

The six operations for sheaves on Artin stacks I: Finite coefficients

Article

Abstract

In this paper we develop a theory of Grothendieck’s six operations of lisse-étale constructible sheaves on Artin stacks locally of finite type over certain excellent schemes of finite Krull dimension. We also give generalizations of the classical base change theorems and Kunneth formula to stacks, and prove new results about cohomological descent for unbounded complexes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Behrend, Derived l-Adic Categories for Algebraic Stacks, Mem. Amer. Math. Soc., vol. 163, no. 774, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  2. 2.
    A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, vol. 100, pp. 5–171, Soc. Math. France, Paris, 1982.Google Scholar
  3. 3.
    M. Bokstedt and A. Neeman, Homotopy limits in triangulated categories, Compos. Math., 86 (1993), 209–234.MathSciNetGoogle Scholar
  4. 4.
    P. Deligne, Cohomologie étale, in Séminaire de Géométrie Algébrique du Bois-Marie SGA \(\big(4\frac12\big)\), Lect. Notes Math., vol. 569, Springer, Berlin, 1977.Google Scholar
  5. 5.
    J. Dieudonné and A. Grothendieck, Éléments de géométrie algébrique, Publ. Math., Inst. Hautes Étud. Sci., 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967).Google Scholar
  6. 6.
    E. Freitag and R. Kiehl, Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb., 3. Folge, vol. 13, Springer, Berlin, 1988.MATHGoogle Scholar
  7. 7.
    E. Frenkel, D. Gaitsgory, and K. Vilonen, On the geometric Langland’s conjecture, J. Amer. Math. Soc., 15 (2002), 367–417.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Fujiwara, A proof of the absolute purity conjecture (after Gabber), in S. Usui, M. Green, L. Illusie, K. Kato, E. Looijenga, S. Mukai, S. Saito (eds.), Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math., vol. 36, pp. 153–183, Math. Soc. Japan, Tokyo, 2002.Google Scholar
  9. 9.
    O. Gabber, A finiteness theorem for non abelian H1 of excellent schemes, in Conférence en l’honneur de L. Illusie, Orsay (2005), http://www.math.polytechnique.fr/∼laszlo/gdtgabber/non-abelien.pdf.Google Scholar
  10. 10.
    O. Gabber, Finiteness theorems for étale cohomology of excellent schemes, in Conference in Honor of P. Deligne on the Occasion of his 61st Birthday, IAS, Princeton (2005), http://www.math.polytechnique.fr/∼laszlo/gdtgabber/abelien.pdf.Google Scholar
  11. 11.
    P.-P. Grivel, Catégories dérivées et foncteurs dérivés, in A. Borel (ed.), Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987.Google Scholar
  12. 12.
    A. Grothendieck, Revétements étales et groupe fondamental, in Séminaire de Géométrie Algébrique du Bois-Marie (SGA 1), Doc. Math., vol. 3, Société Mathématique de France, Paris, 2003.Google Scholar
  13. 13.
    M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, in Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lect. Notes Math. vols. 269, 270, 305, Springer, Berlin, 1972.Google Scholar
  14. 14.
    A. Grothendieck, Cohomologie l-adique et fonctions L, in L. Illusie (ed.), Séminaire de Géometrie Algébrique du Bois-Marie (SGA 5), Lect. Notes Math., vol. 589, Springer, Berlin, 1977.Google Scholar
  15. 15.
    L. Illusie, Y. Laszlo, and F. Orgogozo, Théorème de finitude en cohomologie étale, d’après Gabber, in preparation, École Polytechnique (2007), http://www.math.polytechnique.fr/∼laszlo/gdtgabber/gdtgabber.html.Google Scholar
  16. 16.
    M. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren Math. Wiss., vol. 332, Springer, Berlin, 2006.MATHGoogle Scholar
  17. 17.
    Y. Laszlo and M. Olsson, The six operations for sheaves on Artin stacks II: Adic Coefficients, Publ. Math., Inst. Hautes Étud. Sci., (2008).Google Scholar
  18. 18.
    Y. Laszlo and M. Olsson, Perverse sheaves on Artin stacks, Math. Z., to appear.Google Scholar
  19. 19.
    G. Laumon, Transformation de Fourier homogène, Bull. Soc. Math. Fr., 131 (2003), 527–551.MATHMathSciNetGoogle Scholar
  20. 20.
    G. Laumon and L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb., 3. Folge, vol. 39, Springer, Berlin, 2000.MATHGoogle Scholar
  21. 21.
    G. Laumon and B. C. Ngo, Le lemme fondamental pour les groupes unitaires, preprint (2004), http://arxiv.org/abs/math/0404454.Google Scholar
  22. 22.
    A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205–236.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    M. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math., 603 (2007), 55–112.MATHMathSciNetGoogle Scholar
  24. 24.
    J. Riou, Pureté (d’après Ofer Gabber), in Théorèmes de finitude en cohomogie étale d’après Ofer Gabber, in preparation, preprint (2007), http://www.math.u-psud.fr/∼riou/doc/gysin.pdf.Google Scholar
  25. 25.
    C. Serpét, Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra, 177 (2003), 103–112.CrossRefMathSciNetGoogle Scholar
  26. 26.
    J.-P. Serre, Cohomologie galoisienne, 5th edn., Lect. Notes Math., vol. 5, Springer, Berlin, 1994.MATHGoogle Scholar
  27. 27.
    N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math., 65 (1988), 121–154.MATHMathSciNetGoogle Scholar

Copyright information

© IHES and Springer-Verlag 2008

Authors and Affiliations

  1. 1.CMLS UMR 7640CNRS-École PolytechniquePalaiseau CedexFrance
  2. 2.Department of Mathematics #3840University of CaliforniaBerkeleyUSA

Personalised recommendations