Advertisement

Functoriality for the classical groups

  • J. W. Cogdell
  • H. H. Kim
  • I. I. Piatetski-Shapiro
  • F. Shahidi
Article

Keywords

Classical Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Arthur, The principle of functoriality, Bull. Am. Math. Soc., 40 (2002), 39–53. Google Scholar
  2. 2.
    A. Borel, Automorphic L-functions, Proc. Symp. Pure Math., 33, part 2 (1979), 27–61. Google Scholar
  3. 3.
    N. Bourbaki, Algèbre Commutative, Ch. 3 et 4, Actualités Scientifiques et Industrielles, no. 1293. Hermann, Paris (1961). Google Scholar
  4. 4.
    W. Casselman and F. Shahidi, On reducibility of standard modules for generic representations, Ann. Sci. Éc. Norm. Supér., 31 (1998), 561–589. Google Scholar
  5. 5.
    J. W. Cogdell, Dual groups and Langlands Functoriality, An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston (2003), 251–268. Google Scholar
  6. 6.
    J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GLN, Publ. Math., Inst. Hautes Étud. Sci., 93 (2001), 5–30. Google Scholar
  7. 7.
    J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn, Publ. Math., Inst. Hautes Étud. Sci., 79 (1994), 157–214. Google Scholar
  8. 8.
    J. W. Cogdell and I. I. Piatetski-Shapiro, Stability of gamma factors for SO(2n+1), Manuscr. Math., 95 (1998), 437–461. Google Scholar
  9. 9.
    J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn, II, J. Reine Angew. Math., 507 (1999), 165–188. Google Scholar
  10. 10.
    J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, On stability of local γ-factors, in preparation. Google Scholar
  11. 11.
    S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér., IV. Sér.,11 (1978), 471–542. Google Scholar
  12. 12.
    S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J. Am. Math. Soc., 14 (2001), 79–107. Google Scholar
  13. 13.
    D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on SO(2n+1): functorial lift to GL(2n), endoscopy, and base change, Int. Math. Res. Not., 2001, no. 14 (2001), 729–764. Google Scholar
  14. 14.
    R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lect. Notes Math., 260. Springer-Verlag, Berlin (1972). Google Scholar
  15. 15.
    M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., 151. Princeton University Press, Princeton (2001). Google Scholar
  16. 16.
    G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math., 113 (1993), 339–350. Google Scholar
  17. 17.
    G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139 (2000), 439–455. Google Scholar
  18. 18.
    R. Howe and I. I. Piatetski-Shapiro, A counter-example to the “generalized Ramanujan conjecture” for (quasi)-split groups, Proc. Symp. Pure Math., 33, part 1 (1979), 315–322. Google Scholar
  19. 19.
    H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire., Math. Ann., 256 (1981), 199–214. Google Scholar
  20. 20.
    H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Am. J. Math., 105 (1983), 367–464. Google Scholar
  21. 21.
    H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations, Am. J. Math., 103 (1981), 499–558 and 777–815. Google Scholar
  22. 22.
    H. Jacquet and J. Shalika, The Whittaker models for induced representations, Pac. J. Math., 109 (1983), 107–120. Google Scholar
  23. 23.
    H. Jacquet and J. Shalika, A lemma on highly ramified ε-factors, Math. Ann., 271 (1985), 319–332. Google Scholar
  24. 24.
    C. Jantzen, On square integrable representations of classical p-adic groups, Can. J. Math., 52 (2000), 539–581. Google Scholar
  25. 25.
    C. Jantzen, On square integrable representations of classical p-adic groups II, Represent. Theory, 4 (2000), 127–180. Google Scholar
  26. 26.
    D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications, Ann. Math., 157 (2003), 743–806. Google Scholar
  27. 27.
    D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO2n+1, Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.). Johns Hopkins University Press, Baltimore, to appear. Google Scholar
  28. 28.
    H. Kim, Langlands–Shahidi method and poles of automorphic L-functions, II, Isr. J. Math., 117 (2000), 261–284. Google Scholar
  29. 29.
    H. Kim, Residual spectrum of odd orthogonal groups, Int. Math. Res. Not.2001, no. 17 (2001), 873–906. Google Scholar
  30. 30.
    H. Kim, Applications of Langlands’ functoriality of odd orthogonal groups, Trans. Am. Math. Soc., 354 (2002), 2775–2796. Google Scholar
  31. 31.
    H. Kim, On local L-functions and normalized intertwining operators, Can. J. Math., to appear. Google Scholar
  32. 32.
    H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. Math., 155 (2002), 837–893. Google Scholar
  33. 33.
    L. Lafforgue, Chtoucas de Drinfeld at correspondance de Langlands, Invent. Math., 147 (2002) 1–241. Google Scholar
  34. 34.
    R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surv. Monogr., 31. Am. Math. Soc., Providence, RI (1989), 101–170. Google Scholar
  35. 35.
    R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Proc. Symp. Pure Math., 33, part 2 (1979), 205–246. Google Scholar
  36. 36.
    R. P. Langlands, Where stands functoriality today, Proc. Symp. Pure Math., 61 (1997), 457–471. Google Scholar
  37. 37.
    W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Proc. Symp. Pure Math., 66, part 2 (1999), 301–310. Google Scholar
  38. 38.
    C. Moeglin, Points de réducibilité pour les induits de cuspidals, preprint (2001). Google Scholar
  39. 39.
    C. Moeglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc., 4 (2002), 141–200. Google Scholar
  40. 40.
    C. Moeglin and M. Tadić, Construction of discrete series for p-adic classical groups, J. Am. Math. Soc., 15 (2002), 715–786. Google Scholar
  41. 41.
    C. Moeglin and J-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., 22 (1989), 605–674. Google Scholar
  42. 42.
    G. Muić, On generic irreducible representations of Sp(n,F) and SO(2n+1,F), Glas. Mat., III. Ser., 33 (53) (1998), 19–31. Google Scholar
  43. 43.
    G. Muić, Some results on square integrable representations; Irreducibility of standard representations, Int. Math. Res. Not., 1998, no. 14 (1998), 705–726. Google Scholar
  44. 44.
    G. Muić, A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups, Can. Math. Bull., 44 (2001), 298–312. Google Scholar
  45. 45.
    I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Symp. Pure Math., 33, part 1 (1979), 209–212. Google Scholar
  46. 46.
    P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal., 184 (2001), 419–453. Google Scholar
  47. 47.
    I. Satake, Theory of spherical functions on reductive algebraic groups over \(\mathfrak{p}\)-adic fields, Publ. Math., Inst. Hautes Étud. Sci., 18 (1963), 5–69. Google Scholar
  48. 48.
    F. Shahidi, On certain L-functions, Am. J. Math., 103 (1981), 297–355. Google Scholar
  49. 49.
    F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J., 52 (1985), 973–1007. Google Scholar
  50. 50.
    F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. Math., 127 (1988), 547–584. Google Scholar
  51. 51.
    F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math., 132 (1990), 273–330. Google Scholar
  52. 52.
    F. Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990), 279–289. Google Scholar
  53. 53.
    F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J., 66 (1992), 1–41. Google Scholar
  54. 54.
    F. Shahidi, Twists of a general class of L-functions by highly ramified characters, Can. Math. Bull., 43 (2000), 380–384. Google Scholar
  55. 55.
    F. Shahidi, Local coefficients as Mellin transforms of Bessel functions; Towards a general stability, Int. Math. Res. Not., 2002, no. 39 (2002), 2075–2119. Google Scholar
  56. 56.
    D. Soudry, On Langlands functoriality from classical groups to GLn, Astérisque, to appear. Google Scholar
  57. 57.
    R. Steinberg, Lectures on Chevalley Groups. Yale Lecture Notes, New Haven (1967). Google Scholar
  58. 58.
    M. Tadić, Classification of unitary representations in irreducible representations of general linear groups (non-Archimedean case), Ann. Sci. Éc. Norm. Supér., IV. Sér., 19 (1986), 335–382. Google Scholar
  59. 59.
    J. Tate, Number theoretic background, Proc. Symp. Pure Math., 33, part 2 (1979), 3–26. Google Scholar
  60. 60.
    D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., 48 (1978), 75–98. Google Scholar
  61. 61.
    A. Zelevinsky, Induced representations of reductive \(\mathfrak{p}\)–adic groups, II, Ann. Sci. Éc. Norm. Supér., 13 (1980), 165–210. Google Scholar
  62. 62.
    Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pac. J. Math., 180 (1997), 386–398.Google Scholar

Copyright information

© Institut des Hautes Études Scientifiques and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Department of MathematicsYale UniversityNew HavenUSA
  4. 4.School of MathematicsTel Aviv UniversityTel AvivIsrael
  5. 5.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations