Determinantal probability measures



Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Aldous (1990), The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math., 3, 450–465. Google Scholar
  2. 2.
    N. Alon and J. H. Spencer (2001), The Probabilistic Method. Second edition. New York: John Wiley & Sons Inc. Google Scholar
  3. 3.
    I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (1999), Group-invariant percolation on graphs. Geom. Funct. Anal., 9, 29–66. Google Scholar
  4. 4.
    I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (2001), Uniform spanning forests. Ann. Probab., 29, 1–65. Google Scholar
  5. 5.
    J. van den Berg, and H. Kesten (1985), Inequalities with applications to percolation and reliability. J. Appl. Probab., 22, 556–569. Google Scholar
  6. 6.
    A. Beurling and P. Malliavin (1967), On the closure of characters and the zeros of entire functions. Acta Math., 118, 79–93. Google Scholar
  7. 7.
    A. Borodin (2000), Characters of symmetric groups, and correlation functions of point processes. Funkts. Anal. Prilozh., 34, 12–28, 96. English translation: Funct. Anal. Appl., 34(1), 10–23. Google Scholar
  8. 8.
    A. Borodin, A. Okounkov, and G. Olshanski (2000), Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc., 13, 481–515 (electronic). Google Scholar
  9. 9.
    A. Borodin and G. Olshanski (2000), Distributions on partitions, point processes, and the hypergeometric kernel. Comment. Math. Phys., 211, 335–358. Google Scholar
  10. 10.
    A. Borodin and G. Olshanski (2001), z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles. In P. Bleher and A. Its, eds., Random Matrix Models and Their Applications, vol. 40 of Math. Sci. Res. Inst. Publ., pp. 71–94. Cambridge: Cambridge Univ. Press. Google Scholar
  11. 11.
    A. Borodin and G. Olshanski (2002), Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Preprint. Google Scholar
  12. 12.
    J. Bourgain and L. Tzafriri (1987), Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math., 57, 137–224. Google Scholar
  13. 13.
    A. Broder (1989), Generating random spanning trees. In 30th Annual Symposium on Foundations of Computer Science (Research Triangle Park, North Carolina), pp. 442–447. New York: IEEE. Google Scholar
  14. 14.
    R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte (1940), The dissection of rectangles into squares. Duke Math. J., 7, 312–340. Google Scholar
  15. 15.
    R. M. Burton and R. Pemantle (1993), Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab., 21, 1329–1371. Google Scholar
  16. 16.
    J. Cheeger and M. Gromov (1986), L2-cohomology and group cohomology. Topology, 25, 189–215. Google Scholar
  17. 17.
    Y. B. Choe, J. Oxley, A. Sokal, and D. Wagner (2003), Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. To appear. Google Scholar
  18. 18.
    J. B. Conrey (2003), The Riemann hypothesis. Notices Am. Math. Soc., 50, 341–353. Google Scholar
  19. 19.
    J. B. Conway (1990), A Course in Functional Analysis. Second edition. New York: Springer. Google Scholar
  20. 20.
    J. P. Conze (1972/73), Entropie d’un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25, 11–30. Google Scholar
  21. 21.
    D. J. Daley and D. Vere-Jones (1988), An Introduction to the Theory of Point Processes. New York: Springer. Google Scholar
  22. 22.
    P. Diaconis (2003), Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Bull. Am. Math. Soc., New Ser., 40, 155–178 (electronic). Google Scholar
  23. 23.
    D. Dubhashi and D. Ranjan (1998), Balls and bins: a study in negative dependence. Random Struct. Algorithms, 13, 99–124. Google Scholar
  24. 24.
    F. J. Dyson (1962), Statistical theory of the energy levels of complex systems. III. J. Math. Phys., 3, 166–175. Google Scholar
  25. 25.
    T. Feder and M. Mihail (1992), Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 26–38, New York. Association for Computing Machinery (ACM). Held in Victoria, BC, Canada. Google Scholar
  26. 26.
    R. M. Foster (1948), The average impedance of an electrical network. In Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 333–340. J. W. Edwards, Ann Arbor, Michigan. Edited by the Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn. Google Scholar
  27. 27.
    W. Fulton and J. Harris (1991), Representation Theory: A First Course. Readings in Mathematics. New York: Springer. Google Scholar
  28. 28.
    D. Gaboriau (2002), Invariants l2 de relations d’équivalence et de groupes. Publ. Math., Inst. Hautes Étud. Sci., 95, 93–150. Google Scholar
  29. 29.
    H. O. Georgii (1988), Gibbs Measures and Phase Transitions. Berlin-New York: Walter de Gruyter & Co. Google Scholar
  30. 30.
    O. Häggström (1995), Random-cluster measures and uniform spanning trees. Stochastic Processes Appl., 59, 267–275. Google Scholar
  31. 31.
    P. R. Halmos (1982), A Hilbert Space Problem Book. Second edition. Encycl. Math. Appl. 17, New York: Springer. Google Scholar
  32. 32.
    D. Heicklen and R. Lyons (2003), Change intolerance in spanning forests. J. Theor. Probab., 16, 47–58. Google Scholar
  33. 33.
    K. Johansson (2001), Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2), 153, 259–296. Google Scholar
  34. 34.
    K. Johansson (2002), Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields, 123, 225–280. Google Scholar
  35. 35.
    G. Kalai (1983), Enumeration of Q-acyclic simplicial complexes. Isr. J. Math., 45, 337–351. Google Scholar
  36. 36.
    Y. Katznelson and B. Weiss (1972), Commuting measure-preserving transformations. Isr. J. Math., 12, 161–173. Google Scholar
  37. 37.
    G. Kirchhoff (1847), Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72, 497–508. Google Scholar
  38. 38.
    R. Lyons (1998), A bird’s-eye view of uniform spanning trees and forests. In D. Aldous and J. Propp, eds., Microsurveys in Discrete Probability, vol. 41 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 135–162. Providence, RI: Am. Math. Soc., Papers from the workshop held as part of the Dimacs Special Year on Discrete Probability in Princeton, NJ, June 2–6, 1997. Google Scholar
  39. 39.
    R. Lyons (2000), Phase transitions on nonamenable graphs. J. Math. Phys., 41, 1099–1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. Google Scholar
  40. 40.
    R. Lyons (2003), Random complexes and ℓ2-Betti numbers. In preparation. Google Scholar
  41. 41.
    R. Lyons, Y. Peres, and O. Schramm (2003), Minimal spanning forests. In preparation. Google Scholar
  42. 42.
    R. Lyons and J. E. Steif (2003), Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. To appear. Google Scholar
  43. 43.
    O. Macchi (1975), The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7, 83–122. Google Scholar
  44. 44.
    S. B. Maurer (1976), Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math., 30, 143–148. Google Scholar
  45. 45.
    M. L. Mehta (1991), Random Matrices. Second edition. Boston, MA: Academic Press Inc. Google Scholar
  46. 46.
    B. Morris (2003), The components of the wired spanning forest are recurrent. Probab. Theory Related Fields, 125, 259–265. Google Scholar
  47. 47.
    C. M. Newman (1984), Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong, ed., Inequalities in Statistics and Probability, pp. 127–140. Hayward, CA: Inst. Math. Statist. Proceedings of the symposium held at the University of Nebraska, Lincoln, Neb., October 27–30, 1982. Google Scholar
  48. 48.
    A. Okounkov (2001), Infinite wedge and random partitions. Sel. Math., New Ser., 7, 57–81. Google Scholar
  49. 49.
    A. Okounkov and N. Reshetikhin (2003), Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc., 16, 581–603 (electronic). Google Scholar
  50. 50.
    D. S. Ornstein and B. Weiss (1987), Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math., 48, 1–141. Google Scholar
  51. 51.
    J. G. Oxley (1992), Matroid Theory. New York: Oxford University Press. Google Scholar
  52. 52.
    R. Pemantle (1991), Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19, 1559–1574. Google Scholar
  53. 53.
    R. Pemantle (2000), Towards a theory of negative dependence. J. Math. Phys., 41, 1371–1390. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. Google Scholar
  54. 54.
    J. G. Propp and D. B. Wilson (1998), How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms, 27, 170–217. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). Google Scholar
  55. 55.
    R. Redheffer (1972), Two consequences of the Beurling-Malliavin theory. Proc. Am. Math. Soc., 36, 116–122. Google Scholar
  56. 56.
    R. M. Redheffer (1977), Completeness of sets of complex exponentials. Adv. Math., 24, 1–62. Google Scholar
  57. 57.
    K. Seip and A. M. Ulanovskii (1997), The Beurling-Malliavin density of a random sequence. Proc. Am. Math. Soc., 125, 1745–1749. Google Scholar
  58. 58.
    Q. M. Shao (2000), A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab., 13, 343–356. Google Scholar
  59. 59.
    Q. M. Shao and C. Su (1999), The law of the iterated logarithm for negatively associated random variables. Stochastic Processes Appl., 83, 139–148. Google Scholar
  60. 60.
    T. Shirai and Y. Takahashi (2000), Fermion process and Fredholm determinant. In H. G. W. Begehr, R. P. Gilbert, and J. Kajiwara, eds., Proceedings of the Second ISAAC Congress, vol. 1, pp. 15–23. Kluwer Academic Publ. International Society for Analysis, Applications and Computation, vol. 7. Google Scholar
  61. 61.
    T. Shirai and Y. Takahashi (2002), Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. Preprint. Google Scholar
  62. 62.
    T. Shirai and Y. Takahashi (2003), Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties. Ann. Probab., 31, 1533–1564. Google Scholar
  63. 63.
    T. Shirai and H. J. Yoo (2002), Glauber dynamics for fermion point processes. Nagoya Math. J., 168, 139–166. Google Scholar
  64. 64.
    A. Soshnikov (2000a), Determinantal random point fields. Usp. Mat. Nauk, 55, 107–160. Google Scholar
  65. 65.
    A. B. Soshnikov (2000b), Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys., 100, 491–522. Google Scholar
  66. 66.
    V. Strassen (1965), The existence of probability measures with given marginals. Ann. Math. Stat., 36, 423–439. Google Scholar
  67. 67.
    C. Thomassen (1990), Resistances and currents in infinite electrical networks. J. Combin. Theory, Ser. B, 49, 87–102. Google Scholar
  68. 68.
    J. P. Thouvenot (1972), Convergence en moyenne de l’information pour l’action de Z2. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 24, 135–137. Google Scholar
  69. 69.
    A. M. Vershik and S. V. Kerov (1981), Asymptotic theory of the characters of a symmetric group. Funkts. Anal. i Prilozh., 15, 15–27, 96. English translation: Funct. Anal. Appl., 15(4), 246–255 (1982). Google Scholar
  70. 70.
    D. J. A. Welsh (1976), Matroid Theory. London: Academic Press [Harcourt Brace Jovanovich Publishers]. L. M. S. Monographs, No. 8. Google Scholar
  71. 71.
    N. White, ed. (1987), Combinatorial Geometries. Cambridge: Cambridge University Press. Google Scholar
  72. 72.
    H. Whitney (1935), On the abstract properties of linear dependence. Am. J. Math., 57, 509–533. Google Scholar
  73. 73.
    H. Whitney (1957), Geometric Integration Theory. Princeton, N.J.: Princeton University Press. Google Scholar
  74. 74.
    D. B. Wilson (1996), Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296–303. New York: ACM. Held in Philadelphia, PA, May 22–24, 1996. Google Scholar
  75. 75.
    L. X. Zhang (2001), Strassen’s law of the iterated logarithm for negatively associated random vectors. Stochastic Processes Appl., 95, 311–328. Google Scholar
  76. 76.
    L. X. Zhang and J. Wen (2001), A weak convergence for negatively associated fields. Stat. Probab. Lett., 53, 259–267.Google Scholar

Copyright information

© Institut des Hautes Études Scientifiques and Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations