Motivic cohomology with Z/2-coefficients

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass and J. Tate, The Milnor ring of a global field, In K-theory II, Lecture Notes in Math. 342 (1973), pp. 349–446, Springer. Google Scholar
  2. 2.
    A. Beilinson, Height pairing between algebraic cycles, In K-theory, Arithmetic and Geometry, Lecture Notes in Math. 1289 (1987), pp. 1–26, Springer. Google Scholar
  3. 3.
    S. Bloch, Lectures on algebraic cycles, Duke Univ. Press, 1980. Google Scholar
  4. 4.
    S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, www.math.uiuc.edu/K-theory/062, 1994. Google Scholar
  5. 5.
    S. Borghesi, Algebraic Morava K-theories, Invent. Math., 151 (2) (2003), 381–413. Google Scholar
  6. 6.
    E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), 35 (6) (2002), 773–875. Google Scholar
  7. 7.
    T. Geisser and M. Levine, The K-theory of fields in characteristic p, Invent. Math., 139 (3) (2000), 459–493. Google Scholar
  8. 8.
    T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin–Voevodsky, J. Reine Angew. Math., 530 (2001), 55–103. Google Scholar
  9. 9.
    R. Hartshorne, Algebraic Geometry, Heidelberg: Springer, 1971. Google Scholar
  10. 10.
    J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-theorie algebrique, Lecture Notes in Math. 341 (1973), pp. 293–317. Google Scholar
  11. 11.
    B. Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque, (245): Exp. No. 834, 5 (1997), 379–418. Séminaire Bourbaki, Vol. 1996/97. Google Scholar
  12. 12.
    N. Karpenko, Characterization of minimal Pfister neighbors via Rost projectors, J. Pure Appl. Algebra, 160 (2001), 195–227. Google Scholar
  13. 13.
    K. Kato, A generalization of local class field theory by using K-groups, II, J. Fac. Sci., Univ Tokyo, 27 (1980), 603–683. Google Scholar
  14. 14.
    T. Y. Lam, The algebraic theory of quadratic forms, Reading, MA: The Benjamin/Cummings Publ., 1973. Google Scholar
  15. 15.
    S. Lichtenbaum, Values of zeta-functions at non-negative integers, In Number theory, Lecture Notes in Math. 1068 (1983), pp. 127–138, Springer. Google Scholar
  16. 16.
    H. R. Margolis, Spectra and Steenrod algebra, North-Holland, 1983. Google Scholar
  17. 17.
    V. Voevodsky, C. Mazza and C. Weibel, Lectures on motivic cohomology, I, www.math.uiuc.edu/K-theory/486, 2002. Google Scholar
  18. 18.
    A. Merkurjev, On the norm residue symbol of degree 2, Sov. Math. Dokl., (1981), 546–551. Google Scholar
  19. 19.
    A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya, 21 (1983), 307–340. Google Scholar
  20. 20.
    A. Merkurjev and A. Suslin, The norm residue homomorphism of degree three, Math. USSR Izvestiya, 36(2) (1991), 349–367. Google Scholar
  21. 21.
    J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318–344. Google Scholar
  22. 22.
    J. Milnor, Introduction to Algebraic K-theory, Princeton, N.J.: Princeton Univ. Press, 1971. Google Scholar
  23. 23.
    F. Morel and V. Voevodsky, A 1-homotopy theory of schemes, Publ. Math. IHES, (90) (1999), 45–143. Google Scholar
  24. 24.
    Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, In Algebraic K-theory: connections with geometry and topology, pp. 241–342, Dordrecht: Kluwer Acad. Publ., 1989. Google Scholar
  25. 25.
    D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, www.math.uiuc.edu/K-theory/0454, 2000. Google Scholar
  26. 26.
    D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128. Princeton, 1992. Google Scholar
  27. 27.
    M. Rost, Hilbert 90 for K3 for degree-two extensions, www.math.ohio-state.edu/∼rost/K3-86.html, 1986. Google Scholar
  28. 28.
    M. Rost, On the spinor norm and A0(X,K1) for quadrics, www.math.ohio-state.edu/∼rost/spinor.html, 1988. Google Scholar
  29. 29.
    M. Rost, Some new results on the Chowgroups of quadrics, www.math.ohio-state.edu/∼rost/chowqudr.html, 1990. Google Scholar
  30. 30.
    M. Rost, The motive of a Pfister form, www.math.ohio-state.edu/∼rost/motive.html, 1998. Google Scholar
  31. 31.
    A. Suslin, Algebraic K-theory and the norm residue homomorphism, J. Soviet Math., 30 (1985), 2556–2611. Google Scholar
  32. 32.
    A. Suslin, Higher Chow groups and etale cohomology, In Cycles, transfers and motivic homology theories, pp. 239–254, Princeton: Princeton Univ. Press, 2000. Google Scholar
  33. 33.
    A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117–189, Kluwer, 2000. Google Scholar
  34. 34.
    J. Tate, Relations between K2 and Galois cohomology, Invent. Math., 36 (1976), 257–274. Google Scholar
  35. 35.
    V. Voevodsky, Bloch-Kato conjecture for Z/2-coefficients and algebraic Morava K-theories, www.math.uiuc.edu/K-theory/76, 1995. Google Scholar
  36. 36.
    V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996. Google Scholar
  37. 37.
    V. Voevodsky, The A 1-homotopy theory, In Proceedings of the international congress of mathematicians, 1 (1998), pp. 579–604, Berlin. Google Scholar
  38. 38.
    V. Voevodsky, Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 87–137, Princeton: Princeton Univ. Press, 2000. Google Scholar
  39. 39.
    V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188–238, Princeton: Princeton Univ. Press, 2000. Google Scholar
  40. 40.
    V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne), www.math.uiuc.edu/ K-theory /527, 2000/2001. Google Scholar
  41. 41.
    V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., (7) (2002), 351–355. Google Scholar
  42. 42.
    V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES (this volume), 2003. Google Scholar
  43. 43.
    V. Voevodsky, E. M. Friedlander and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000.Google Scholar

Copyright information

© Institut des Hautes Études Scientifiques and Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute for Advanced StudyV.V. School of MathematicsPrincetonUSA

Personalised recommendations