Advertisement

Algebraic leaves of algebraic foliations over number fields

  • Jean-Benoît Bost

Summary

— We prove an algebraicity criterion for leaves of algebraic foliations defined over number fields. Namely, consider a number field K embedded in C, a smooth algebraic variety X over K, equipped with a K-rational point P, and F an algebraic subbundle of the its tangent bundle TX, defined over K. Assume moreover that the vector bundle F is involutive, i.e., closed unter Lie bracket. Then it defines an holomorphic foliation of the analytic mainfold X(C), and one may consider its leaf ℱ through P. We prove that ℱ is algebraic if the following local conditions are satisfied:

i) For almost every prime ideal p of the ring of integers 𝒪K of the number field K, the p-curvature of the reduction modulo p of the involutive bundle F vanishes at P (where p denotes the characteristic of the residue field 𝒪K/p).

ii) The analytic manifoldsatisfies the Liouville property; this arises, in particular, if ℱ is the image by some holomorphic map of the complement in a complex algebraic variety of a closed analytic subset.

This algebraicity criterion unifies and extends various results of D. V. and G. V. Chudnovsky, André, and Graftieaux, and also admits new consequences. For instance, applied to an algebraic group G over K, it shows that a K-Lie subalgebra h of Lie G is algebraic if and only if for almost every non-zero prime ideal p of 𝒪K, of residue characteristic p, the reduction modulo p of h is a restricted Lie subalgebra of the reduction modulo p of Lie G (i.e., is stable under p-th powers). This solves a conjecture of Ekedahl and Shepherd-Barron.

The algebraicity criterion above follows from a more basic algebraicity criterion concerning smooth formal germs in algebraic varieties over number fields. The proof of the latter relies on “transcendence techniques”, recast in a modern geometric version involving elementary concepts of Arakelov geometry, and on some analytic estimates, related to the First Main Theorem of higher-dimensional Nevanlinna theory.

Keywords

Algebraic Variety Number Field Holomorphic Foliation Reduction Modulo Algebraicity Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

— Nous établissons un critère d'algébricité concernant les feuilles des feuilletages algébriques définis sur un corps de nombres. Soit en effet K un corps de nombres plongé dans C, X une variété algébrique lisse sur K, munie d'un point K-rationnel P, et F un sous-fibré du fibré tangent TX, défini sur K. Supposons de plus que le fibré vectoriel F soit involutif, i.e.., stable par crochet de Lie. Il définit alors un feuilletage holomorphe de la variété analytique X(C) et l'on peut considérer la feuille ℱ de ce feuilletage passant par P. Nous montrons que ℱ est algébrique lorque les conditions locales suivantes son satisfaites:

i) Pour presque tout idéal premier p de l'annneau des entiers 𝒪K de K, la réduction modulo p du fibré F est stablé par l'opération de puissance p-ième (où p désigne la caractéristique du corps résiduel 𝒪K/p).

ii) La variété analytiquesatisfait à la propriété de Liouville; cela a lieu, par exemple, lorsque ℱ est l'image par une application holomorphe du complémentaire d'un sous-ensemble analytique fermé dans une variété algébrique.

Ce critère d'algébricité unifie et généralise divers résultats de D. V. and G. V. Chudnovsky, André et Graftieaux. Il conduit aussi à de nouvelles conséquences. Par exemple, appliqué à un groupe algébrique G sur K, il montre qu'une sous-algèbre de Lie h de Lie G, définie sur K, est algébrique si et seulement si, pour presque tout idéal premier p de 𝒪K, de caractéristique résiduelle p, la réduction modulo p de h est une sous-p-algèbre de Lie de la réduction modulo p de Lie G (i.e., est stable par puissance p-ième). Cet énoncé résout une conjecture d'Ekedahl et Shepherd-Barron.

Le critère d'algébricité ci-dessus découle d'un critère d'algébricité plus général, concernant les germes de sous-variétés formelles des variétés sur les corps de nombres. La démonstration de ce dernier repose sur des “techniques de transcendance”, reformulées dans une version géométrique utilisant diverses notions élémentaires de géométrie d'Arakelov, et sur des estimations analytiques reliées au premier théorème fondamental de la théorie de Nevanlinna en dimension supérieure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Institut des Hautes Études Scientifiques et Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jean-Benoît Bost
    • 1
  1. 1.Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay cedex, France.FR

Personalised recommendations