Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile

  • Guadalupe Avalos-Navarro
  • José Francisco Muñoz-Valle
  • Adrian Daneri-Navarro
  • Antonio Quintero-Ramos
  • Ramon Antonio Franco-Topete
  • Andres de Jesus Morán-Mendoza
  • Antonio Oceguera-Villanueva
  • Luis Alberto Bautista-Herrera
  • Antonio Topete-Camacho
  • Alicia Del Toro-ArreolaEmail author
Original Article


Breast cancer (BC) is a health problem worldwide; there is evidence that inflammatory cytokines are increased in BC. Macrophage migration inhibitory factor (MIF) has multiple effects on immune cells, inflammation and cancer. Besides, in previous studies, contradictory and uncertain results have been presented on the implication of Th17 cytokine profile in BC. The aim of this study was to evaluate the plasma levels of MIF and the Th17 cytokine profile in BC and their association with their molecular subtypes and clinical stage. A total of 150 women with BC of Ella Binational Breast Cancer Study and 60 healthy women (HW) were evaluated in cross-sectional study. The molecular subtypes were identified by immunohistochemistry. The plasma levels of MIF were quantified by ELISA and Th17 cytokine profile by multiplex system. MIF and IL-17 were significantly increased in BC versus HW (11.1 vs. 5.2 ng/mL and 14.8 pg/mL vs. 2.5 pg/mL p < 0.001, respectively). Our analysis showed that both MIF and IL-17A were associated with increased risk of breast cancer (OR 3.85 CI 95% 1.98–7.50 and OR 4.51 95% 1.83–11.15, respectively), higher in aggressive subtypes Luminal B, HER2 and TN. Likewise, we observed positive correlation between MIF and IL-17A (p < 0.001). In addition, IL-17E was lower in BC versus HW (p <0.001). Likewise, we observed a positive correlation between MIF and IL-17A (p < 0.001). In conclusion, both MIF and IL-17A were associated with high risk for breast cancer and aggressive molecular subtypes.


MIF Th17 Cytokine profile Molecular subtypes Breast cancer 



The authors greatly appreciate the important contribution of Rogelio Troyo Sanroman for the statistical analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted conforming to the declaration of Helsinki and the research was approved by the ethical investigation, committee from each hospital and Universidad de Guadalajara (CI-9708).

Informed consent

Informed consent was obtained from each participant before enrolling in this study.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefGoogle Scholar
  2. 2.
    Karatas F, Erdem GU, Sahin S, et al. Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2017;32:237–44. Scholar
  3. 3.
    Eroles P, Bosch A, Alejandro Pérez-Fidalgo J, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707. Scholar
  4. 4.
    Lukong KE. Understanding breast cancer: the long and winding road. BBA Clin. 2017;7:64–77. Scholar
  5. 5.
    Kawczyk-krupka A, Bugaj AM, Latos W, et al. ALA-mediated photodynamic effect on apoptosis induction, and secretion of macrophage migration inhibitory factor (MIF) and of monocyte chemotactic protein (MCP-1), by colon cancer cells in normoxia and in hypoxia-like conditions in vitro. Photodiagnosis Photodyn Ther. 2014;S1572–1000:1–25. Scholar
  6. 6.
    Ballesio L, Gigli S, Di Pastena F, et al. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: correlation with tumor biological subtypes and pathological response after therapy. Tumor Biol. 2017;39(3):1010428317694540.CrossRefGoogle Scholar
  7. 7.
    Dushyanthen S, Beavis PA, Savas P, et al. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med. 2015;13(1):1–13. Scholar
  8. 8.
    Pruneri G, Vingiani A, Denkert C. Tumor infiltrating lymphocytes in early breast cancer. Breast. 2018;37:207–14. Scholar
  9. 9.
    Matsumoto H, Koo S, Dent R, Tan PH, Iqbal J. Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol. 2015;68(7):506–10. Scholar
  10. 10.
    Agahozo MC, Hammerl D, Debets R, Kok M, van Deurzen CHM. Tumor-infiltrating lymphocytes and ductal carcinoma in situ of the breast: friends or foes? Mod Pathol. 2018;31(7):1012–25.CrossRefGoogle Scholar
  11. 11.
    Thibaudin M, Chaix M, Boidot R, Vegran F, Derangere V, Limagne E, et al. Human ectonucleotidase-expressing CD25(high) Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology. 2016;5(1):e1055444.CrossRefGoogle Scholar
  12. 12.
    Xu X, Wang B, Ye C, et al. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett. 2008;261(2):147–57.CrossRefGoogle Scholar
  13. 13.
    Welte T, Zhang XHF. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm. 2015;2015:1–6.CrossRefGoogle Scholar
  14. 14.
    Richard V, Kindt N, Saussez S. Macrophage migration inhibitory factor involvement in breast cancer (Review). Int J Oncol. 2015;47(5):1627–33.CrossRefGoogle Scholar
  15. 15.
    Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800.
  16. 16.
    Rendon BE, Willer SS, Zundel W, Mitchell RA. Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol. 2009;86(3):180–5. Scholar
  17. 17.
    Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR17 chemokine receptor/ligand family: molecular perspectives. Front Immunol. 2015;6:1–23.CrossRefGoogle Scholar
  18. 18.
    Alampour-Rajabi S, El Bounkari O, Rot A, et al. MIF interacts with CXCR18 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J. 2015;29(11):4497–511.CrossRefGoogle Scholar
  19. 19.
    Stojanović I, Cvjetićanin T, Lazaroski S, Stošić-Grujičić S, Miljković D. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126(1):74–83.CrossRefGoogle Scholar
  20. 20.
    Guéry L, Hugues S. Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015;2015:314620.CrossRefGoogle Scholar
  21. 21.
    Richard V, Kindt N, Saussez S. Macrophage migration inhibitory factor involvement in breast cancer. Int J Oncol. 2015;47:1627–33.CrossRefGoogle Scholar
  22. 22.
    Gnant M, Thomssen C, Harbeck N. St. Gallen/Vienna 2015: a brief summary of the consensus discussion. Breast care. 2015;10(2):124–30.CrossRefGoogle Scholar
  23. 23.
    Lugrin J, Ding XC, Le Roy D, et al. Histone deacetylase inhibitors repress macrophage migration inhibitory factor (MIF) expression by targeting MIF gene transcription through a local chromatin deacetylation. Biochim Biophys Acta Mol Cell Res. 2009;1793(11):1749–58. Scholar
  24. 24.
    Richard V, Kindt N, Decaestecker C, et al. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer. Oncol Rep. 2014;32(2):523–9.CrossRefGoogle Scholar
  25. 25.
    Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100. Scholar
  26. 26.
    Bando H, Matsumoto G, Bando M et al. Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn J Cancer Res. 2002;93(4):389–96.
  27. 27.
    Nobre CCG, Araújo JMG, Fernandes TAA, et al. Macrophage Migration Inhibitory Factor (MIF): biological activities and relation with cancer. Pathol Oncol Res. 2017;23(2):235–44. Scholar
  28. 28.
    Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2012;80(1):41–52.CrossRefGoogle Scholar
  29. 29.
    Verjans E, Noetzel E, Bektas N, et al. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer. 2009;9:1–18.CrossRefGoogle Scholar
  30. 30.
    Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019 (in Press).Google Scholar
  31. 31.
    Fabre J, Giustinniani J, Garbar C, et al. The interleukin-17 family of cytokines in breast cancer. Int J Mol Sci. 2018;19(12):3880.CrossRefGoogle Scholar
  32. 32.
    Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal. 2019;57:76–88.CrossRefGoogle Scholar
  33. 33.
    Lang T, Lee J, Elgass K, et al. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun. 2018;9(1):2223.CrossRefGoogle Scholar
  34. 34.
    Balogh N, Templeton J, Cross V. Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS ONE. 2018;13(6):e0197702.CrossRefGoogle Scholar
  35. 35.
    Simpson D, Cross V. MIF: metastasis/MDSC-inducing factor? Oncoimmunology. 2013;2(3):e23337.CrossRefGoogle Scholar
  36. 36.
    Umansky V. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018;9:1–9.CrossRefGoogle Scholar
  37. 37.
    Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun. 2017;493(1):1–8. Scholar
  38. 38.
    Jiang Z, Chen J, Du X, Cheng H, Wang X, Dong C. IL-25 blockade inhibits metastasis in breast cancer. Protein Cell. 2017;8(3):191–201.CrossRefGoogle Scholar
  39. 39.
    Croce M, Rigo V, Ferrini S. IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res. 2015;2015:696578.CrossRefGoogle Scholar
  40. 40.
    Wang L-N, Cui Y-X, Ruge F, Jiang WG. Interleukin 21 and its receptor play a role in proliferation, migration and invasion of breast cancer cells. Cancer Genom Proteom. 2015;12(5):211–21.
  41. 41.
    Ko H, Shen C, Murugan K, et al. Macrophage Migration Inhibitory Factor Acts as the potential target of a Newly synthesized Compound, 1-(9′-methyl-3′-carbazole)-3,4-dihydro-β-carboline. Sci Rep. 2019;9(1):2147.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guadalupe Avalos-Navarro
    • 1
  • José Francisco Muñoz-Valle
    • 2
  • Adrian Daneri-Navarro
    • 1
  • Antonio Quintero-Ramos
    • 1
  • Ramon Antonio Franco-Topete
    • 3
    • 4
  • Andres de Jesus Morán-Mendoza
    • 5
  • Antonio Oceguera-Villanueva
    • 6
  • Luis Alberto Bautista-Herrera
    • 2
  • Antonio Topete-Camacho
    • 1
  • Alicia Del Toro-Arreola
    • 1
    Email author
  1. 1.Laboratorio de Inmunología, Departamento de Fisiología, CUCSUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Biología Molecular y GenómicaUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Laboratorio de Patología, Departamento de Patología y Microbiología, CUCSUniversidad de GuadalajaraGuadalajaraMexico
  4. 4.OPD Hospital Civil de Guadalajara, “Nuevo Hospital Civil, Juan I. Menchaca”GuadalajaraMexico
  5. 5.Hospital de Especialidades, Centro Medico Nacional de Occidente, IMSSGuadalajaraMexico
  6. 6.Instituto Jalisciense de Cancerología, Secretaría de SaludGuadalajaraMexico

Personalised recommendations