Advertisement

1q23.1 homozygous deletion and downregulation of Fc receptor-like family genes confer poor prognosis in chronic lymphocytic leukemia

  • Giulia Daniele
  • Alberto L’Abbate
  • Antonella Turchiano
  • Orazio Palumbo
  • Massimo Carella
  • Crocifissa Lo Cunsolo
  • Paolo Iuzzolino
  • Angelo Lonoce
  • María Hernández-Sánchez
  • Carla Minoia
  • Patrizia Leone
  • Jesus Maria Hernandez-Rivas
  • Clelia Tiziana StorlazziEmail author
Case Report
  • 28 Downloads

Abstract

The identification of chromosome 1 translocations and deletions is a rare and poorly investigated event in chronic lymphocytic leukemia (CLL). Nevertheless, the identification of novel additional molecular alterations is of great interest, opening to new prognostic and therapeutic strategies for such heterogeneous hematological disease. We here describe a patient affected by CLL with a mutated IGHV status, showing a balanced t(1;3)(q23.1;q21.3) translocation and a der(18)t(1;18)(q24.2;p11.32), accompanying the recurrent 13q14 heterozygous deletion in all analyzed cells at onset. By combining whole-genome sequencing, SNP array, RNA sequencing, and FISH analyses, we defined a 1q23.1 biallelic minimally deleted region flanking translocations breakpoints at both derivative chromosome 1 homologues. The deletion resulted in the downregulation of the Fc receptor-like family genes FCRL1, FCRL2, and FCRL3 and in the lack of expression of FCRL5, observed by RT-qPCR. The mutational status of TP53, NOTCH1, SF3B1, MYD88, FBXW7, and XPO1 was investigated by targeted next-generation sequencing, detecting a frameshift deletion within NOTCH1 (c.7544_7545delCT). We hypothesize a loss of tumor suppressor function for FCRL genes, cooperating with NOTCH1 mutation and 13q14 genomic loss in our patient, both conferring a negative prognosis, independently from the known biological prognostic factors of CLL.

Keywords

CLL 1q23.1 deletion FCRL IGHV NOTCH1 Translocation 

Notes

Authors’ contribution

GD and AT performed and analyzed FISH, M-FISH, RT-PCR, and RT-qPCR experiments. AL’A analyzed WGS and RNA-Seq data. OP and MC performed and analyzed SNP array data. CLC and PI performed cytogenetic examinations and flow cytometry immunophenotyping. AL and PL performed and analyzed RT-PCR experiments. MHS and JMHR performed and interpreted mutational analysis. CM and JMHR analyzed and explained the patient data regarding the hematological disease. CTS conceptual organized and supervised the experiments. GD, AL’A, AT, MHS, and CTS were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the AIRC (Associazione Italiana per la Ricerca sul Cancro; AIRC IG No. 15413 for CTS).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10238_2019_551_MOESM1_ESM.pdf (106 kb)
Supplementary material 1 (PDF 106 kb)
10238_2019_551_MOESM2_ESM.pdf (314 kb)
Supplementary material 2 (PDF 313 kb)
10238_2019_551_MOESM3_ESM.xlsx (29.9 mb)
Supplementary material 3 (XLSX 30636 kb)
10238_2019_551_MOESM4_ESM.pdf (994 kb)
Supplementary material 4 (PDF 993 kb)
10238_2019_551_MOESM5_ESM.xlsx (15 kb)
Supplementary material 5 (XLSX 14 kb)
10238_2019_551_MOESM6_ESM.xlsx (9 kb)
Supplementary material 6 (XLSX 9 kb)
10238_2019_551_MOESM7_ESM.xls (30 kb)
Supplementary material 7 (XLS 30 kb)
10238_2019_551_MOESM8_ESM.pdf (2.1 mb)
Supplementary material 8 (PDF 2146 kb)
10238_2019_551_MOESM9_ESM.xlsx (157 kb)
Supplementary material 9 (XLSX 157 kb)
10238_2019_551_MOESM10_ESM.xlsx (12 kb)
Supplementary material 10 (XLSX 12 kb)
10238_2019_551_MOESM11_ESM.xlsx (10 kb)
Supplementary material 11 (XLSX 9 kb)
10238_2019_551_MOESM12_ESM.xlsx (9 kb)
Supplementary material 12 (XLSX 9 kb)
10238_2019_551_MOESM13_ESM.pdf (67 kb)
Supplementary material 13 (PDF 66 kb)

References

  1. 1.
    Fischer K, Hallek M. Optimizing frontline therapy of CLL based on clinical and biological factors. Hematol. Am. Soc. Hematol Edu. Program. 2017;2017(1):338–45.  https://doi.org/10.1182/asheducation-2017.1.338.Google Scholar
  2. 2.
    Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 2000;343(26):1910–6.  https://doi.org/10.1056/NEJM200012283432602.CrossRefGoogle Scholar
  3. 3.
    Michaux L, Wlodarska I, Rack K, Stul M, Criel A, Maerevoet M, et al. Translocation t(1;6)(p35.3;p25.2): a new recurrent aberration in “unmutated” B-CLL. Leukemia. 2005;19(1):77–82.  https://doi.org/10.1038/sj.leu.2403543.CrossRefGoogle Scholar
  4. 4.
    Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens UM, et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood. 2007;109(3):1202–10.  https://doi.org/10.1182/blood-2006-07-034256.CrossRefGoogle Scholar
  5. 5.
    ISCN 2016. An international system for human cytogenomic nomenclature (2016) McGowan-Jordan J, Simons A, Schmid M (eds), Karger, Basel.Google Scholar
  6. 6.
    Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Stevenson F, et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007;21(1):1–3.  https://doi.org/10.1038/sj.leu.2404457.CrossRefGoogle Scholar
  7. 7.
    Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L, et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood. 2010;115(19):3916–22.  https://doi.org/10.1182/blood-2009-10-249367.CrossRefGoogle Scholar
  8. 8.
    L’Abbate A, Lo Cunsolo C, Macri E, Iuzzolino P, Mecucci C, Doglioni C, et al. FOXP1 and TP63 involvement in the progression of myelodysplastic syndrome with 5q- and additional cytogenetic abnormalities. BMC Cancer. 2014;14:396.  https://doi.org/10.1186/1471-2407-14-396.CrossRefGoogle Scholar
  9. 9.
    Jourdan M, Robert N, Cren M, Thibaut C, Duperray C, Kassambara A, et al. Characterization of human FCRL4-positive B cells. PLoS ONE. 2017;12(6):e0179793.  https://doi.org/10.1371/journal.pone.0179793.CrossRefGoogle Scholar
  10. 10.
    Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–17.  https://doi.org/10.1038/leu.2013.263.CrossRefGoogle Scholar
  11. 11.
    Quijada-Alamo M, Hernandez-Sanchez M, Robledo C, Hernandez-Sanchez JM, Benito R, Montano A, et al. Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia. J. Hematol. Oncol. 2017;10(1):83.  https://doi.org/10.1186/s13045-017-0450-y.CrossRefGoogle Scholar
  12. 12.
    Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C, et al. Robustness of amplicon deep sequencing underlines its utility in clinical applications. J. Mol. Diagn. 2013;15(4):473–84.  https://doi.org/10.1016/j.jmoldx.2013.03.003.CrossRefGoogle Scholar
  13. 13.
    Capone M, Bryant JM, Sutkowski N, Haque A. Fc Receptor-like proteins in pathophysiology of B-cell disorder. J. Clin. Cell Immunol. 2016.  https://doi.org/10.4172/2155-9899.1000427.Google Scholar
  14. 14.
    Li FJ, Ding S, Pan J, Shakhmatov MA, Kashentseva E, Wu J, et al. FCRL2 expression predicts IGHV mutation status and clinical progression in chronic lymphocytic leukemia. Blood. 2008;112(1):179–87.  https://doi.org/10.1182/blood-2008-01-131359.CrossRefGoogle Scholar
  15. 15.
    Nuckel H, Collins CH, Frey UH, Sellmann L, Durig J, Siffert W, et al. FCRL2 mRNA expression is inversely associated with clinical progression in chronic lymphocytic leukemia. Eur. J. Haematol. 2009;83(6):541–9.  https://doi.org/10.1111/j.1600-0609.2009.01328.x.CrossRefGoogle Scholar
  16. 16.
    Kochi Y, Myouzen K, Yamada R, Suzuki A, Kurosaki T, Nakamura Y, et al. FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling. J. Immunol. 2009;183(9):5502–10.  https://doi.org/10.4049/jimmunol.0901982.CrossRefGoogle Scholar
  17. 17.
    Shabani M, Bayat AA, Jeddi-Tehrani M, Rabbani H, Hojjat-Farsangi M, Ulivieri C, et al. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling. Immunology. 2014;143(3):341–53.  https://doi.org/10.1111/imm.12311.CrossRefGoogle Scholar
  18. 18.
    Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34(12):592–601.  https://doi.org/10.1016/j.it.2013.07.002.CrossRefGoogle Scholar
  19. 19.
    Di Ianni M, Baldoni S, Rosati E, Ciurnelli R, Cavalli L, Martelli MF, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br. J. Haematol. 2009;146(6):689–91.  https://doi.org/10.1111/j.1365-2141.2009.07816.x.CrossRefGoogle Scholar
  20. 20.
    Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113(4):856–65.  https://doi.org/10.1182/blood-2008-02-139725.CrossRefGoogle Scholar
  21. 21.
    Hertlein E, Byrd JC. Signalling to drug resistance in CLL. Best Pract. Res. Clin. Haematol. 2010;23(1):121–31.  https://doi.org/10.1016/j.beha.2010.01.007.CrossRefGoogle Scholar
  22. 22.
    Hernandez-Sanchez M, Rodriguez-Vicente AE, Hernandez JA, Lumbreras E, Sarasquete ME, Martin AA, et al. MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion. Leuk. Res. 2016;46:30–6.  https://doi.org/10.1016/j.leukres.2016.04.008.CrossRefGoogle Scholar
  23. 23.
    Zheng Z, Venkatapathy S, Rao G, Harrington CA. Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia. 2002;16(12):2429–37.  https://doi.org/10.1038/sj.leu.2402711.CrossRefGoogle Scholar
  24. 24.
    Gorini F, Azzimonti L, Delfanti G, Scarfo L, Scielzo C, Bertilaccio MT, et al. Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood. 2017;129(26):3440–51.  https://doi.org/10.1182/blood-2016-11-751065.CrossRefGoogle Scholar
  25. 25.
    Green MR, Jardine P, Wood P, Wellwood J, Lea RA, Marlton P, et al. A new method to detect loss of heterozygosity using cohort heterozygosity comparisons. BMC Cancer. 2010;10:195.  https://doi.org/10.1186/1471-2407-10-195.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giulia Daniele
    • 1
  • Alberto L’Abbate
    • 1
  • Antonella Turchiano
    • 1
  • Orazio Palumbo
    • 2
  • Massimo Carella
    • 2
  • Crocifissa Lo Cunsolo
    • 3
  • Paolo Iuzzolino
    • 3
  • Angelo Lonoce
    • 1
  • María Hernández-Sánchez
    • 4
  • Carla Minoia
    • 5
  • Patrizia Leone
    • 6
  • Jesus Maria Hernandez-Rivas
    • 4
  • Clelia Tiziana Storlazzi
    • 1
    Email author
  1. 1.Department of BiologyUniversity of Bari “Aldo Moro”BariItaly
  2. 2.Medical Genetics UnitIRCCS Casa Sollievo della Sofferenza HospitalSan Giovanni RotondoItaly
  3. 3.UO Anatomia Patologica, Ospedale S. MartinoBellunoItaly
  4. 4.Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, IBMCC, Centro de Investigación del CáncerUniversidad de Salamanca, CSICSalamancaSpain
  5. 5.Haematology UnitIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly
  6. 6.Department of Biomedical Sciences and Human Oncology, Internal Medicine Unit G. BaccelliUniversity of Bari Aldo Moro Medical SchoolBariItaly

Personalised recommendations