Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma

  • Arezoo Rasti
  • Zahra Madjd
  • Maryam Abolhasani
  • Mitra Mehrazma
  • Leila Janani
  • Leili Saeednejad Zanjani
  • Mojgan Asgari
Original Article


Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial–mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.


Twist1 Epithelial–mesenchymal transition (EMT) Renal cell carcinoma (RCC) Prognosis Tissue microarray (TMA) 



The authors are grateful to Elham Kalantari for her excellent technical assistance.


This research was supported by a Grant of the Iran University of Medical Sciences (Grant #25166).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This research study was approved by the Iran University of Medical Sciences Research Ethics Committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34(3):193–205.CrossRefPubMedGoogle Scholar
  2. 2.
    Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010;4(1):58–73.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rini BI, Rathmell WK, Godley P. Renal cell carcinoma. Curr Opin Oncol. 2008;20(3):300–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996;335(12):865–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Slaby O, Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, et al. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosom Cancer. 2012;51(7):707–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14(2):159–67.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Guarino M. Epithelial–mesenchymal transition and tumour invasion. Int J Biochem Cell Biol. 2007;39(12):2153–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Mikami S, Oya M, Mizuno R, Kosaka T, Katsube K-I, Okada Y. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47(2):63–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Roussos ET, Keckesova Z, Haley JD, Epstein DM, Weinberg RA, Condeelis JS. AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment. AACR; 2010.Google Scholar
  13. 13.
    Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004;64(15):5270–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 1999;13(17):2207–17.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kwok WK, Ling M-T, Lee T-W, Lau TC, Zhou C, Zhang X, et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005;65(12):5153–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161(5):1881–91.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    van Doorn RDR, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R, Tensen CP. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res. 2004;64:5578–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Lei P, Ding D, Xie J, Wang L, Liao Q, Hu Y. Expression profile of Twist, vascular endothelial growth factor and CD34 in patients with different phases of osteosarcoma. Oncol Lett. 2015;10(1):417–21.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hosono S, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A, et al. Expression of Twist increases the risk for recurrence and for poor survival in epithelial ovarian carcinoma patients. Br J Cancer. 2007;96(2):314–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohba K, Miyata Y, Matsuo T, Asai A, Mitsunari K, Shida Y, et al. High expression of Twist is associated with tumor aggressiveness and poor prognosis in patients with renal cell carcinoma. Int J Clin Exp Pathol. 2014;7(6):3158–65.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Harada KI, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial–mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110(11c):E1131–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D et al. (2013) The International Society of Urological Pathology (ISUP) vancouver classification of renal neoplasia. Amer J Surg Pathol 37(10):1469–1489CrossRefGoogle Scholar
  24. 24.
    Rasti A, Abolhasani M, Zanjani LS, Asgari M, Mehrazma M, Madjd Z. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma. J Cancer Res Clin Oncol. 2017;143(1):95–104.CrossRefPubMedGoogle Scholar
  25. 25.
    Roudi R, Korourian A, Shariftabrizi A, Madjd Z. Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Invest. 2015;33(7):294–302.CrossRefPubMedGoogle Scholar
  26. 26.
    Erfani E, Roudi R, Rakhshan A, Sabet M, Shariftabrizi A, Madjd Z. Comparative expression analysis of putative cancer stem cell markers CD44 and ALDH1A1 in various skin cancer subtypes. Int J Biol Mark. 2015;31(1):e53–61.Google Scholar
  27. 27.
    Madjd Z, Ramezani B, Molanae S, Asadi-Lari M. High expression of stem cell marker ALDH1 is associated with reduced BRCA1 in invasive breast carcinomas. Asian Pac J Cancer Prev. 2012;13(6):2973–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Mohsenzadegan M, Madjd Z, Asgari M, Abolhasani M, Shekarabi M, Taeb J, et al. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother. 2013;62(10):1609–18.CrossRefPubMedGoogle Scholar
  29. 29.
    McCarty K Jr, Miller L, Cox E, Konrath J, McCarty K Sr. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 1985;109(8):716–21.PubMedGoogle Scholar
  30. 30.
    Turun S, Banghua L, Zheng S, Wei Q (2012) Is tumor size a reliable predictor of histopathological characteristics of renal cell carcinoma? Urol Annals 4(1):24CrossRefGoogle Scholar
  31. 31.
    Sountoulides P, Metaxa L, Cindolo L. Atypical presentations and rare metastatic sites of renal cell carcinoma: a review of case reports. J Med Case Rep. 2011;5(1):429.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.CrossRefPubMedGoogle Scholar
  33. 33.
    Davis FM, Stewart TA, Thompson EW, Monteith GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci. 2014;35(9):479–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ansieau S, Bastid J, Doreau A, Morel A-P, Bouchet BP, Thomas C, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14(1):79–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Wushou A, Hou J, Zhao Y-J, Shao Z-M. Twist-1 up-regulation in carcinoma correlates to poor survival. Int J Mol Sci. 2014;15(12):21621–30.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Singh S, Mak IW, Handa D, Ghert M. The role of TWIST in angiogenesis and cell migration in giant cell tumor of bone. Ad Biol. 2014;2014.Google Scholar
  38. 38.
    Pardis S, Zare R, Jaafari-Ashkavandi Z, Javad Ashraf M, Khademi B. Twist expression in pleomorphic adenoma, adenoid cystic carcinoma and mucoepidermoid carcinoma of salivary glands. Turk J Pathol. 2016;32(1):15–21.Google Scholar
  39. 39.
    Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW. Significance of TWIST and E-cadherin expression in the metastatic progression of prostatic cancer. Histopathology. 2007;50(5):648–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Harb O, Hegazy A, Ali M, Haggag R. Prognostic implication of MYb-like, swirm and Mpn domain-containing protein-1 and Twist-1 in renal cell carcinoma. J Interdiscip Histopathol. 2016;4(1):1–8.CrossRefGoogle Scholar
  41. 41.
    Lang H, Lindner V, Saussine C, Havel D, et al. Microscopic venous invasion: a prognostic factor in renal cell carcinoma. Eur Urol. 2000;38(5):600–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Ball MW, Gorin MA, Harris KT, Curtiss KM, Netto GJ, Pavlovich CP et al. Extent of renal vein invasion influences prognosis in patients with renal cell carcinoma. BJU Int 2015.Google Scholar
  43. 43.
    Mai KT, Landry DC, Robertson SJ, Commons AS, Burns BF, Thijssen A, et al. A comparative study of metastatic renal cell carcinoma with correlation to subtype and primary tumor. Pathol Res Pract. 2001;197(10):671–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Galván Hernández JA, Helbling M, Kölzer V, Tschan M, Berger MD, Hädrich M, et al. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget. 2015;6(2):874–85.CrossRefGoogle Scholar
  45. 45.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Q-w Zhang, Liu L, C-y Gong, H-s Shi, Y-h Zeng, X-z Wang, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE. 2012;7(12):e50946.CrossRefGoogle Scholar
  47. 47.
    Hemmerlein B, Markus A, Wehner M, Kugler A, Zschunke F, Radzun H-J. Expression of acute and late-stage inflammatory antigens, c-fms, CSF-1, and human monocytic serine esterase 1, in tumor-associated macrophages of renal cell carcinomas. Cancer Immunol Immunother. 2000;49(9):485–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013;62(12):1757–68.CrossRefPubMedGoogle Scholar
  49. 49.
    Bajetto A, Barbieri F, Dorcaratto A, Barbero S, Daga A, Porcile C, et al. Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int. 2006;49(5):423–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang B, Yu W, Feng X, Zhao Z, Fan Y, Meng Y, et al. Prognostic significance of PD–L1 expression on tumor cells and tumor-infiltrating mononuclear cells in upper tract urothelial carcinoma. Med Oncol. 2017;34(5):94.CrossRefPubMedGoogle Scholar
  51. 51.
    Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41(2):114–21.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Wang H, Zhao Q, Xia Y, Hu X, Guo J. PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 2015;32(8):1–7.CrossRefGoogle Scholar
  53. 53.
    Noman MZ, Janji B, Abdou A, Hasmim M, Terry S, Tan TZ, et al. The immune checkpoint ligand PD–L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology. 2017;6(1):e1263412.CrossRefPubMedGoogle Scholar
  54. 54.
    Xin H, Kong Y, Jiang X, Wang K, Qin X, Miao Z-H, et al. Multi-drug–resistant cells enriched from chronic myeloid leukemia cells by doxorubicin possess tumor-initiating–cell properties. J Pharmacol Sci. 2013;122(4):299–304.CrossRefPubMedGoogle Scholar
  55. 55.
    Li J, Zhou BP. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11(1):1.CrossRefGoogle Scholar
  56. 56.
    Vesuna F, Lisok A, Kimble B, Raman V. Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia. 2009;11(12):1318–28.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud’homme GJ, Yousef GM. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties. Oncotarget. 2015;6(8):5567.CrossRefPubMedGoogle Scholar
  58. 58.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.CrossRefPubMedGoogle Scholar
  59. 59.
    White NM, Yousef GM. Translating molecular signatures of renal cell carcinoma into clinical practice. Amsterdam: Elsevier; 2011.Google Scholar
  60. 60.
    Matak D, Szymanski L, Szczylik C, Sledziewski R, Lian F, Bartnik E, et al. Biology of renal tumour cancer stem cells applied in medicine. Contemp Oncol. 2015;19(1A):A44.Google Scholar
  61. 61.
    Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22(10):3696–705.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhong Y, Guan K, Guo S, Zhou C, Wang D, Ma W, et al. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 2010;299(2):150–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Oncopathology Research CentreIran University of Medical Sciences (IUMS)TehranIran
  2. 2.Department of Molecular Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
  3. 3.Hasheminejad Kidney CenterIran University of Medical Sciences, (IUMS)TehranIran
  4. 4.Department of Biostatistics, School of Public HealthIran University of Medical Sciences (IUMS)TehranIran

Personalised recommendations