Advertisement

Clinical and Experimental Medicine

, Volume 17, Issue 3, pp 305–323 | Cite as

“Classical organic acidurias”: diagnosis and pathogenesis

  • Guglielmo RD Villani
  • Giovanna Gallo
  • Emanuela Scolamiero
  • Francesco Salvatore
  • Margherita Ruoppolo
Review Article

Abstract

Organic acidurias are inherited metabolic diseases due to the deficiency of an enzyme or a transport protein involved in one of the several cellular metabolic pathways devoted to the catabolism of amino acids, carbohydrates or lipids. These deficiencies result in abnormal accumulation of organic acids in the body and their abnormal excretion in urine. More than 65 organic acidurias have been described; the incidence varies, individually, from 1 out of 10,000 to >1 out of 1000,000 live births. Collectively, their incidence approximates 1 out of 3000 live births. Among these disorders, methyl malonic aciduria, propionic aciduria, maple syrup urine disease and isovaleric aciduria are sometimes referred to as classical organic acidurias. In this review, we focused on the basic GC–MS-based methodologies employed in the diagnosis of classical organic acidurias and provided updated reference values for the most common involved organic acids. We also attempted to provide the most recent updates on the pathogenetic bases of these diseases.

Keywords

Inborn errors of metabolism Organic aciduria Reference intervals Diagnosis and pathogenesis 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.Google Scholar
  2. 2.
    Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.PubMedCrossRefGoogle Scholar
  4. 4.
    Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.PubMedCrossRefGoogle Scholar
  5. 5.
    Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.PubMedCrossRefGoogle Scholar
  6. 6.
    Chace DH. Mass spectrometry in the clinical laboratory. Chem Rev. 2001;101(2):445–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.PubMedCrossRefGoogle Scholar
  8. 8.
    García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.PubMedGoogle Scholar
  9. 9.
    Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.PubMedGoogle Scholar
  10. 10.
    Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.PubMedGoogle Scholar
  11. 11.
    la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.PubMedGoogle Scholar
  13. 13.
    Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.PubMedGoogle Scholar
  14. 14.
    Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://www.ncbi.nlm.nih.gov/books/NBK1231/ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005.
  19. 19.
    Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.CrossRefGoogle Scholar
  20. 20.
    Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kruszka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP. Renal growth in isolated methylmalonic acidemia. Genet Med. 2013;15:990–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.PubMedGoogle Scholar
  29. 29.
    Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi: 10.1097/MD.0000000000000584.Google Scholar
  32. 32.
    De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.PubMedCrossRefGoogle Scholar
  39. 39.
    Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.PubMedCrossRefGoogle Scholar
  46. 46.
    De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.CrossRefGoogle Scholar
  53. 53.
    Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.CrossRefGoogle Scholar
  54. 54.
    Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://www.ncbi.nlm.nih.gov/books/NBK92946/ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012.
  55. 55.
    Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.PubMedGoogle Scholar
  58. 58.
    Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.PubMedCrossRefGoogle Scholar
  64. 64.
    De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.CrossRefGoogle Scholar
  65. 65.
    Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.CrossRefGoogle Scholar
  70. 70.
    El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.CrossRefGoogle Scholar
  71. 71.
    de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.PubMedCrossRefGoogle Scholar
  78. 78.
    Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.PubMedCrossRefGoogle Scholar
  79. 79.
    Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.PubMedCrossRefGoogle Scholar
  84. 84.
    Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://www.ncbi.nlm.nih.gov/books/NBK1319/ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006.
  86. 86.
    Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.PubMedCrossRefGoogle Scholar
  87. 87.
    Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.PubMedCrossRefGoogle Scholar
  88. 88.
    De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print].Google Scholar
  91. 91.
    Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.CrossRefGoogle Scholar
  92. 92.
    Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.PubMedGoogle Scholar
  95. 95.
    Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.PubMedCrossRefGoogle Scholar
  97. 97.
    Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.CrossRefGoogle Scholar
  102. 102.
    Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65.Google Scholar
  103. 103.
    Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.PubMedCrossRefGoogle Scholar
  107. 107.
    Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print].Google Scholar
  108. 108.
    Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.CrossRefGoogle Scholar
  110. 110.
    Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.CrossRefGoogle Scholar
  111. 111.
    Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.PubMedCrossRefGoogle Scholar
  113. 113.
    Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.PubMedCrossRefGoogle Scholar
  115. 115.
    Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.PubMedCrossRefGoogle Scholar
  116. 116.
    Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.PubMedCrossRefGoogle Scholar
  118. 118.
    Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Guglielmo RD Villani
    • 1
    • 2
  • Giovanna Gallo
    • 1
    • 2
  • Emanuela Scolamiero
    • 2
  • Francesco Salvatore
    • 2
  • Margherita Ruoppolo
    • 1
    • 2
  1. 1.Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli “Federico II”NaplesItaly
  2. 2.CEINGE Biotecnologie AvanzateNaplesItaly

Personalised recommendations