Skip to main content

Advertisement

Log in

Low-dose gemcitabine induces major histocompatibility complex class I-related chain A/B expression and enhances an antitumor innate immune response in pancreatic cancer

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

We investigated the effect of gemcitabine (GEM), a key drug for pancreatic cancer treatment, on the expression of cell surface MICA/B in pancreatic cancer cells and resulting cytotoxicity of γδ T cells. We assessed the effect of GEM on the upregulation of cell surface MICA/B expression by flow cytometry, utilizing six pancreatic cancer cell lines. MICA and CD16 expressions from resected pancreatic cancer patient specimens, which received neoadjuvant chemotherapy (NAC) with GEM, were analyzed by immunohistochemistry. GEM could increase MICA/B expression on cell surface in pancreatic cancer cell lines (in 2 of 6 cell lines). This effect was most effectively at concentration not affecting cell growth of GEM (0.001 μM), because MICA/B negative population was appeared at concentration at cytostatic and cytotoxic effect to cell growth (0.1 and 10 μM). The cytotoxic activity of γδ T cells against PANC-1 was detected and functions through interactions between NKG2D and MICA/B. However, the enhancement of NKG2D-dependent cytotoxicity with increased MICA/B expression, by GEM treatment, was not observed. In addition, soluble MIC molecules were released from pancreatic cancer cell lines in culture supernatant with GEM treatment. Immunohistochemical staining demonstrated that MICA expression in tumor cells and CD16 positive cells surrounding tumors were significantly higher in the NAC group compared to that of the control group. There was a significant correlation between NAC and MICA expression, as well as NAC and CD16 positive cell expression. The present results indicate that low-dose GEM-induced MICA/B expression enhances innate immune function rather than cytotoxicity in pancreatic cancer. In addition, our result suggests that the inhibition of cleavage and release of MIC molecules from the tumor surface could potentially improve NKG2D-dependent cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloprotease

γδ:

Gamma delta

GEM:

Gemcitabine

KIRs:

Killer cell immunoglobulin-like receptors

MICA/B:

Major histocompatibility complex class 1-related chain A/B

MDSCs:

Myeloid-derived suppressor cells

NKG2D:

Natural killer, group 2, member D

NAC:

Neoadjuvant chemotherapy

NK:

Natural killer

TGF-β:

Transforming growth factor-β

References

  1. Lowenfels AB, Maisonneuve P. Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol. 2004;34:238–44.

    Article  PubMed  Google Scholar 

  2. Karamitopoulou E. Role of epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma: Is tumor budding the missing link? Front Oncol. 2013;3:221.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma C, Eltawil KM, Renfrew PD, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990–2010. World J Gastroenterol. 2011;17:867–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer—science driving clinical progress. Nat Rev Cancer. 2005;5:459–67.

    Article  CAS  PubMed  Google Scholar 

  6. Gunturu KS, Rossi GR, Saif MW. Immunotherapy updates in pancreatic cancer: are we there yet? Ther Adv Med Oncol. 2013;5:81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Visser KE. Spontaneous immune responses to sporadic tumors: tumor-promoting, tumor-protective or both? Cancer Immunol Immunother. 2008;57:1531–9.

    Article  CAS  PubMed  Google Scholar 

  8. Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002;71:907–20.

    CAS  PubMed  Google Scholar 

  9. Lu J, Aggarwal R, Kanji S, et al. Human ovarian tumor cells escape γδ T cell recognition partly by down regulating surface expression of MICA and limiting cell cycle related molecules. PLoS One. 2011;6:e23348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol. 2002;169:1236–40.

    Article  CAS  PubMed  Google Scholar 

  11. Baragaño Raneros A, Suarez-Álvarez B, López-Larrea C. Secretory pathways generating immunosuppressive NKG2D ligands: New targets for therapeutic intervention. Oncoimmunology. 2014;3:e28497.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov. 2012;11:215–33.

    Article  CAS  PubMed  Google Scholar 

  13. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21:15–25.

    Article  CAS  PubMed  Google Scholar 

  14. Nowak AK, Robinson BW, Lake RA. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 2003;63:4490–6.

    CAS  PubMed  Google Scholar 

  15. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011;71:5101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61.

    Article  CAS  PubMed  Google Scholar 

  17. Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer. 2010;102:115–23.

    Article  CAS  PubMed  Google Scholar 

  18. Yusa S, Catina TL, Campbell KS. KIR2DL5 can inhibit human NK cell activation via recruitment of Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2). J Immunol. 2004;172:7385–92.

    Article  CAS  PubMed  Google Scholar 

  19. Märten A, von Lilienfeld-Toal M, Büchler MW, Schmidt J. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 2006;119:2359–65.

    Article  PubMed  Google Scholar 

  20. Fournié JJ, Sicard H, Poupot M, et al. What lessons can be learned from γδ T cell-based cancer immunotherapy trials? Cell Mol Immunol. 2013;10:35–41.

    Article  PubMed  Google Scholar 

  21. Oberg HH, Peipp M, Kellner C, et al. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 2014;74:1349–60.

    Article  CAS  PubMed  Google Scholar 

  22. Braza MS, Klein B. Anti-tumour immunotherapy with Vγ9 Vδ2 T lymphocytes: from the bench to the bedside. Br J Haematol. 2013;160:123–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kondo M, Izumi T, Fujieda N, et al. Expansion of human peripheral blood γδ T cells using zoledronate. J Vis Exp. 2011;55:3182.

    Google Scholar 

  24. Tatsumi T, Takehara T, Yamaguchi S, et al. Intrahepatic delivery of alpha-galactosylceramide-pulsed dendritic cells suppresses liver tumor. Hepatology. 2007;45:22–30.

    Article  CAS  PubMed  Google Scholar 

  25. Mimura K, Kamiya T, Shiraishi K, et al. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer. Int J Cancer. 2014;135:1390–8.

    Article  CAS  PubMed  Google Scholar 

  26. Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol. 2002;169:4098–102.

    Article  CAS  PubMed  Google Scholar 

  27. Chitadze G, Lettau M, Bhat J, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133:1557–66.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng C, Jiao X, Jiang Y, Sun S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J Int Med Res. 2013;41:300–6.

    Article  CAS  PubMed  Google Scholar 

  29. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008;68:6368–76.

    Article  CAS  PubMed  Google Scholar 

  30. Jinushi M, Takehara T, Tatsumi T, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol. 2005;43:1013–20.

    Article  CAS  PubMed  Google Scholar 

  31. Zocchi MR, Catellani S, Canevali P, et al. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood. 2012;119:1479–89.

    Article  CAS  PubMed  Google Scholar 

  32. Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res. 2004;64:7596–603.

    Article  CAS  PubMed  Google Scholar 

  33. Rubtsov YP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol. 2007;7:443–53.

    Article  CAS  PubMed  Google Scholar 

  34. Bird L. Regulatory T cells: Nurtured by TGFbeta. Nat Rev Immunol. 2010;10:466.

    Article  CAS  PubMed  Google Scholar 

  35. Ebi M, Kataoka H, Shimura T, et al. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells. Biochem Biophys Res Commun. 2010;402:449–54.

    Article  CAS  PubMed  Google Scholar 

  36. Oshima H, Popivanova BK, Oguma K, Kong D, Ishikawa TO, Oshima M. Activation of epidermal growth factor receptor signaling by the prostaglandin E(2) receptor EP4 pathway during gastric tumorigenesis. Cancer Sci. 2011;102:713–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9:4461–8.

    Article  PubMed  Google Scholar 

  38. Dietz HC. TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J Clin Invest. 2010;120:403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyashita T, Tajima H, Makino I, et al. Metastasis-promoting role of extravasated platelet activation in tumor. J Surg Res. 2015;193:289–94.

    Article  CAS  PubMed  Google Scholar 

  40. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78.

    Article  CAS  PubMed  Google Scholar 

  42. Todaro M, Meraviglia S, Caccamo N, Stassi G, Dieli F. Combining conventional chemotherapy and γδ T cell-based immunotherapy to target cancer-initiating cells. Oncoimmunology. 2013;2:e25821.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hylander BL, Pitoniak R, Penetrante RB, et al. The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med. 2005;3:22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jacob D, Davis JJ, Zhang L, Zhu H, Teraishi F, Fang B. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther. 2005;12:109–15.

    Article  CAS  PubMed  Google Scholar 

  45. Bai J, Sui J, Demirjian A, Vollmer CM, Marasco W, Callery MP. Predominant Bcl-XL knockdown disables antiapoptotic mechanisms: tumor necrosis factor-related apoptosis-inducing ligand-based triple chemotherapy overcomes chemoresistance in pancreatic cancer cells in vitro. Cancer Res. 2005;65:2344–52.

    Article  CAS  PubMed  Google Scholar 

  46. Schniewind B, Christgen M, Kurdow R, et al. Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer. 2004;109:182–8.

    Article  CAS  PubMed  Google Scholar 

  47. Schüler S, Fritsche P, Diersch S, et al. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells. Mol Cancer. 2010;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25462106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoharu Miyashita.

Ethics declarations

Conflict of interest

The authors declare that no financial or other conflicts of interest exist in relation to the content of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyashita, T., Miki, K., Kamigaki, T. et al. Low-dose gemcitabine induces major histocompatibility complex class I-related chain A/B expression and enhances an antitumor innate immune response in pancreatic cancer. Clin Exp Med 17, 19–31 (2017). https://doi.org/10.1007/s10238-015-0394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0394-x

Keywords

Navigation