Clinical and Experimental Medicine

, Volume 16, Issue 1, pp 29–35 | Cite as

Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis

  • Shichao Li
  • Xiaorong Yang
  • Jinmei Yang
  • Jiesheng Zhen
  • Dechun ZhangEmail author
Original Article


Serum microRNA-21 (miR-21) expression has been shown to be significantly up-regulated in breast cancer, which implies that it could be a biomarker to discriminate breast cancer patients from healthy controls. We therefore performed this meta-analysis to assess the diagnostic value of miR-21 for breast cancer. Relevant articles were collected from PubMed, Scopus, Embase, the Cochrane Library, BioMed Central, ISI Web of Knowledge, China National Knowledge Infrastructure, Wan Fang Data and Technology of Chongqing databases, from inception to June 10, 2014 by two independent researchers. Diagnostic capacity of miR-21 for breast cancer was assessed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), area under the summary receiver operating characteristic (AUC) and Fagan’s nomogram. Meta-Disc software and Stata SE 12.0 were used to investigate the source of heterogeneity and to perform the meta-analysis. We used six studies with a total of 438 patients and 228 healthy controls in this meta-analysis. The pooled sensitivity, specificity and DOR were 0.79 [95 % confidence interval (CI) 0.66–0.87], 0.85 (95 % CI 0.75–0.91) and 19.46 (95 % CI 8.74–43.30), respectively; positive and negative likelihood ratios were 5 and 0.25, and AUC was 0.89 (95 % CI 0.86–0.91). In addition, heterogeneity was clearly apparent but was not caused by the threshold effect. This meta-analysis suggests that miR-21 is a potential biomarker for early diagnosis of breast cancer with high sensitivity and specificity, and its clinical application warrants further investigation.


Breast cancer miR-21 Diagnosis Meta-analysis 



The authors would like to thank Bin Qin for supporting more datum that not reported in their articles. And thanks to the anonymous reviewers for their suggestions to improve the quality of the paper.

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

10238_2014_332_MOESM1_ESM.tif (1.7 mb)
Supplementary material 1 (TIFF 1724 kb)
10238_2014_332_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 36 kb)
10238_2014_332_MOESM3_ESM.doc (26 kb)
Supplementary material 3 (DOC 26 kb)


  1. 1.
    DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252–71. doi: 10.3322/caac.21235.CrossRefPubMedGoogle Scholar
  2. 2.
    Danny RY, Susanna MC, Cheng HY, Baade PD, et al. Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol Med. 2014;11:101–15. doi: 10.7497/j.issn.2095-3941.2014.02.005.Google Scholar
  3. 3.
    James SL, Water HG, Noel JW. Viruses and human breast cancer. Future microbiol. 2006;1(1):33–51.CrossRefGoogle Scholar
  4. 4.
    Ismail J, John RB. Novel approaches to the diagnosis and treatment of breast cancer. Future Oncol. 2014;10(4):515–8.CrossRefGoogle Scholar
  5. 5.
    Heywang-Kobrunner SH, Hacher A, Sedlacek S. Advantages and disadvantages of mammography screening. Breast Care. 2011;6:199–207. doi: 10.1159/000329005.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Euler-Chelpin MV, Louise MR, Brian LT, et al. Risk of breast cancer after false-positive test results in screening mammography. J Natl Cancer Inst. 2012;104(9):682–9. doi: 10.1093/jnci/djs176.CrossRefGoogle Scholar
  7. 7.
    Mahendar P, Nagulu M, Uday KV, et al. evaluation of tumor markers in southern Indian breast cancer patients. Asian Pac J Cancer Prev. 2010;11:157–9.Google Scholar
  8. 8.
    Fiorella G, Patrizia F, Sandro C, et al. A re-evaluation of carcinoembryonic antigen (CEA) as a serum marker for breast cancer : a prospective longitudinal study. Clin Cancer Res. 2001;7:2357–62.Google Scholar
  9. 9.
    Nicolini A, Colombini C, Luciani L, et al. Evaluation of serum CA15-3 determination with CEA and TPA in the post-operative follow-up of breast cancer patients. Br J Cancer. 1991;64:154–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin Chem. 2006;52(3):345–51. doi: 10.1373/clinchem.2005.059832.CrossRefPubMedGoogle Scholar
  11. 11.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weiland M, Gao XH, Zhou L, et al. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–9. doi: 10.4161/rna.20378.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang J, Zhao H, Gao Y, et al. Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta. 2012;1826(1):32–43. doi: 10.1016/j.bbcan.2012.03.001.PubMedGoogle Scholar
  14. 14.
    Shen J, Stass SA, Jiang F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. 2013;329(2):125–36. doi: 10.1016/j.canlet.2012.11.001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heneghan HM, Miller N, Lowery AJ, et al. Circulating micrornas as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505. doi: 10.1097/SLA.0b013e3181cc939f.CrossRefPubMedGoogle Scholar
  16. 16.
    Patrick SM, Rachael KP, Evan MK, et al. Circulating microRNAs as stable blood-basedmarkers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105.CrossRefGoogle Scholar
  17. 17.
    Li T, Leong MH, Harms B, et al. MicroRNA-21 as a potential colon and rectal cancer biomarker. World J Gastroenterol. 2013;19(34):5615–21. doi: 10.3748/wjg.v19.i34.5615.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yang XR, Du Gao YN, et al. Serum microRNA-21 as a diagnostic marker for lung carcinoma: a systematic review and meta-analysis. PloS One. 2013;9(5):e97460. doi: 10.1371/journal.pone.0097460 eCollection 2014.CrossRefGoogle Scholar
  19. 19.
    Zeng ZY, Wang JG, Zhao LY, et al. Potential role of microRNA-21 in the diagnosis of gastric cancer: a meta-analysis. PLoS One. 2013;8(9):e73278. doi: 10.1371/journal.pone.0073278.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Si HY, Sun XM, Chen YJ, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139(2):223–9. doi: 10.1007/s00432-012-1315-y.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang F, Zheng Z, Guo J, et al. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 2010;119(3):586–93. doi: 10.1016/j.ygyno.2010.07.021.CrossRefPubMedGoogle Scholar
  22. 22.
    Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91. doi: 10.1373/clinchem.2010.151845.CrossRefPubMedGoogle Scholar
  23. 23.
    Gao J, Zhang Q, Xu J, et al. Clinical significance of serum miR-21 in breast cancer compared with CA153 and CEA. Chin J Cancer Res. 2013;25(6):743–8. doi: 10.3978/j.issn.1000-9604.2013.12.04.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sun Y. Novel serum biomarkers in breast cancer : detection and clinical significance [Master]: National Center for Clinical Laboratory. 2012.Google Scholar
  25. 25.
    Wang B, Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012;138(10):1659–66. doi: 10.1007/s00432-012-1244-9.CrossRefPubMedGoogle Scholar
  26. 26.
    Penny W, Anne WR, Johannes BR, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3(25).Google Scholar
  27. 27.
    Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6(31). doi: 10.1186/1471-2288-6-31.
  28. 28.
    Mar-Aguilar F, Mendoza-Ramirez JA, Malagon-Santiago I, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Marker. 2013;34(3):163–9. doi: 10.3233/dma-120957.CrossRefGoogle Scholar
  29. 29.
    Li XF, Xu JJ, Zhang QY. Establishment of real-time PCR for detecting serum micriRNA-21 and its preliminary application in breast cancer. Chin J Lab Med. 2011;34(10):920–5.Google Scholar
  30. 30.
    Götte M. MicroRNAs in breast cancer pathogenesis. Minerva Ginecol. 2010;62(6):559–71.PubMedGoogle Scholar
  31. 31.
    Rahul S, Berna SS, Alex HM, et al. MicroRNA control of invasion and metastasis pathways. Front Genet. 2011;2:1–5. doi: 10.3389/fgene.2011.00058.Google Scholar
  32. 32.
    Marilena V, Iorio PC, Piovan C, Braccioli L, Tagliabue E. Breast cancer and microRNAs: therapeutic impact. Breast. 2011;20(S3):S63–70. doi: 10.1016/S0960-9776(11)70297-1.Google Scholar
  33. 33.
    Aoife JL, Nicola M, Roisin EM, et al. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin cancer Res. 2008;14:360–5. doi: 10.1158/1078-0432.CCR-07-0992.CrossRefGoogle Scholar
  34. 34.
    Cathy AA, Brian MN, Thompson EA, et al. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Cell. 2011;17(6):313–9. doi: 10.1016/j.molmed.2011.01.006.Google Scholar
  35. 35.
    Afina S, Jeroen GL, Martin HP, Bossuyt PM, et al. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35. doi: 10.1016/S0895-4356(03)00177-X.CrossRefGoogle Scholar
  36. 36.
    Walter SD. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 2002;21:1237–56. doi: 10.1002/sim.1099.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Shichao Li
    • 1
  • Xiaorong Yang
    • 1
  • Jinmei Yang
    • 1
  • Jiesheng Zhen
    • 2
  • Dechun Zhang
    • 1
    Email author
  1. 1.Department of Pathogenic Biology, Molecular Oncology LaboratoryChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Clinical LaboratoryRenmin Hospital of WuHan UniversityWuhanPeople’s Republic of China

Personalised recommendations