Clinical and Experimental Medicine

, Volume 15, Issue 3, pp 421–426 | Cite as

Deregulation of MYC and TP53 through genetic and epigenetic alterations in gallbladder carcinomas

  • Geraldo Ishak
  • Mariana Ferreira LealEmail author
  • Ney Pereira Carneiro dos Santos
  • Samia Demachki
  • Caroline Aquino Moreira Nunes
  • Barbara do Nascimento Borges
  • Danielle Queiroz Calcagno
  • Marília Cardoso Smith
  • Paulo Pimentel Assumpção
  • Rommel Rodríguez Burbano
Letter to the Editor


Gallbladder cancer is a rare malignancy and presents a poor prognosis. MYC and p53 have been implicated in gallbladder carcinogenesis. However, little is known about the molecular mechanisms involved in their regulation in this neoplasia. Here, we evaluated the MYC and TP53 copy numbers in gallbladder tumors and their possible association with protein expression. We also investigated whether MYC may be controlled by mutations and DNA promoter methylation. In the present study, 15 samples of invasive gallbladder carcinomas and six control samples were analyzed. On the other hand, the expression of MYC and p53 was more frequent in gallbladder carcinomas than in control samples (p = 0.002, p = 0.046, respectively). Gain of copies of the MYC and TP53 genes was detected in 86.7 and 50 % of gallbladder carcinomas, respectively. MYC and TP53 amplifications were associated with immunoreactivity of their protein (p = 0.029, p = 0.001, respectively). MYC hypomethylation was only detected in tumoral samples and was associated with its protein expression (p = 0.029). MYC mutations were detected in 80 % of tumor samples. The G allele at rs117856857 was associated with the presence of gallbladder tumors (p = 0.019) and with MYC expression (p = 0.044). Moreover, two tumors presented a pathogenic mutation in MYC exon 2 (rs28933407). Our study highlights that the gain of MYC and TP53 copies seems to be a frequent finding in gallbladder cancer. In addition, gain of copies, hypomethylation and point mutations at MYC may contribute to overexpression of its protein in this type of cancer.


Gallbladder carcinoma MYC TP53 Genetic alterations Epigenetic modifications 



This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; MCS and RRB) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; MFL) as grants and fellowship awards.

Conflict of interest



  1. 1.
    Wernberg JA, Lucarelli DD. Gallbladder cancer. Surg Clin N Am. 2014;94(2):343–60. doi: 10.1016/j.suc.2014.01.009.CrossRefPubMedGoogle Scholar
  2. 2.
    Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi: 10.1101/gad.1067003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pelengaris S, Khan M. The many faces of c-MYC. Arch Biochem Biophys. 2003;416(2):129–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Z, Jiang L, Yang B, Liao D. The roles of VEGF and C-myc in occurrence, development and metastasis of gallbladder carcinoma. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003;20(1):68–70.PubMedGoogle Scholar
  5. 5.
    Roa I, Araya JC, Shiraishi T, et al. Gallbladder carcinoma: expression of the c-myc and ras-p-21 oncogene products. Rev Med Chil. 1994;122(7):754–9.PubMedGoogle Scholar
  6. 6.
    Yukawa M, Fujimori T, Hirayama D, et al. Expression of oncogene products and growth factors in early gallbladder cancer, advanced gallbladder cancer, and chronic cholecystitis. Hum Pathol. 1993;24(1):37–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Ooi A, Suzuki S, Nakazawa K, et al. Gene amplification of Myc and its coamplification with ERBB2 and EGFR in gallbladder adenocarcinoma. Anticancer Res. 2009;29(1):19–26.PubMedGoogle Scholar
  8. 8.
    Hamada H, Tashima Y, Kisaka Y, et al. Sophisticated framework between cell cycle arrest and apoptosis induction based on p53 dynamics. PLoS ONE. 2009;4(3):e4795. doi: 10.1371/journal.pone.0004795.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shu GS, Lv F, Yang ZL, Miao XY. Immunohistochemical study of PUMA, c-Myb and p53 expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Int J Clin Oncol. 2013;18(4):641–50. doi: 10.1007/s10147-012-0431-7.CrossRefPubMedGoogle Scholar
  10. 10.
    Sessa F, Furlan D, Genasetti A, Billo P, Feltri M, Capella C. Microsatellite instability and p53 expression in gallbladder carcinomas. Diagn Mol Pathol. 2003;12(2):96–102.CrossRefPubMedGoogle Scholar
  11. 11.
    Oohashi Y, Watanabe H, Ajioka Y, Hatakeyama K. p53 immunostaining distinguishes malignant from benign lesions of the gall-bladder. Pathol Int. 1995;45(1):58–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Sobin LH, Gopodarowicz MK, Wittekind C. TNM classification of malignant tumors. 7th ed. Oxford: Wiley-Blackwell; 2009.Google Scholar
  13. 13.
    Calcagno DQ, Leal MF, Seabra AD, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12(38):6207–11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Silva TC, Leal MF, Calcagno DQ, et al. hTERT, MYC and TP53 deregulation in gastric preneoplastic lesions. BMC Gastroenterol. 2012;12:85. doi: 10.1186/1471-230X-12-85.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pereira CB, Leal MF, de Souza CR, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS ONE. 2013;8(3):e60576. doi: 10.1371/journal.pone.0060576.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yemelyanova A, Vang R, Kshirsagar M, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011;24(9):1248–53. doi: 10.1038/modpathol.2011.85.CrossRefPubMedGoogle Scholar
  17. 17.
    Itoi T, Watanabe H, Yoshida M, Ajioka Y, Nishikura K, Saito T. Correlation of p53 protein expression with gene mutation in gall-bladder carcinomas. Pathol Int. 1997;47(8):525–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Calcagno DQ, Freitas VM, Leal MF, et al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC gastroenterol. 2013;13(1):141. doi: 10.1186/1471-230X-13-141.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    da de Costa JF, Leal MF, Silva TC, et al. Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS ONE. 2011;6(7):e21988. doi: 10.1371/journal.pone.0021988.CrossRefGoogle Scholar
  20. 20.
    Leal MF, Calcagno DQ, Khayat AS, et al. hTERT and TP53 deregulation in intestinal-type gastric carcinogenesis in non-human primates. Clin exp med. 2013;13(3):221–4. doi: 10.1007/s10238-012-0195-4.CrossRefPubMedGoogle Scholar
  21. 21.
    Leal MF, Cirilo PD, Mazzotti TK, et al. Prohibitin expression deregulation in gastric cancer is associated with the 3’ untranslated region 1630 c > t polymorphism and copy number variation. PLoS ONE. 2014;9(5):e98583. doi: 10.1371/journal.pone.0098583.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gustafsson U, Einarsson C, Eriksson LC, Gadaleanu V, Sahlin S, Tribukait B. DNA ploidy and S-phase fraction in carcinoma of the gallbladder related to histopathology, number of gallstones and survival. Anal Cell Pathol. 2001;23(3–4):143–52.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Futakawa N, Kimura W, Ando H, Muto T, Esaki Y. Heterogeneity of DNA ploidy pattern in carcinoma of the gallbladder: primary and metastatic sites. Jpn J Cancer Res. 1997;88(9):886–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamamoto M, Oda N, Tahara E. DNA ploidy patterns in gallbladder adenocarcinoma. Jpn J Clin Oncol. 1990;20(1):83–6.PubMedGoogle Scholar
  25. 25.
    Rosal-Texeira C, Leal MF, Calcagno DQ et al. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS ONE. 2013;8(5):e64420.Google Scholar
  26. 26.
    Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14(39):5962–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. doi: 10.1038/nbt.1685.CrossRefPubMedGoogle Scholar
  28. 28.
    Du YP, Peng JS, Sun A, Tang ZH, Ling WH, Zhu HL. Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model. BMC Cancer. 2009;9:261. doi: 10.1186/1471-2407-9-261.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sharrard RM, Royds JA, Rogers S, Shorthouse AJ. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer. 1992;65(5):667–72.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fang JY, Zhu SS, Xiao SD, et al. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol. 1996;11(11):1079–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Fang JY, Xiao SD, Zhu SS, Yuan JM, Qiu DK, Jiang SJ. Relationship of plasma folic acid and status of DNA methylation in human gastric cancer. J Gastroenterol. 1997;32(2):171–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Weng YR, Sun DF, Fang JY, Gu WQ, Zhu HY. Folate levels in mucosal tissue but not methylenetetrahydrofolate reductase polymorphisms are associated with gastric carcinogenesis. World J Gastroenterol. 2006;12(47):7591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li M, Chen WD, Papadopoulos N, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27(9):858–63. doi: 10.1038/nbt.1559.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ryan KM, Birnie GD. Myc oncogenes: the enigmatic family. Biochem J. 1996;314(Pt 3):713–21.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Geraldo Ishak
    • 1
  • Mariana Ferreira Leal
    • 2
    • 3
    Email author
  • Ney Pereira Carneiro dos Santos
    • 1
  • Samia Demachki
    • 1
  • Caroline Aquino Moreira Nunes
    • 4
  • Barbara do Nascimento Borges
    • 4
    • 5
  • Danielle Queiroz Calcagno
    • 1
  • Marília Cardoso Smith
    • 2
  • Paulo Pimentel Assumpção
    • 1
  • Rommel Rodríguez Burbano
    • 1
    • 4
  1. 1.Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros BarretoUniversidade Federal do ParáBelémBrazil
  2. 2.Genetics Division, Department of Morphology and GeneticFederal University of São PauloSão PauloBrazil
  3. 3.Departamento de Ortopedia e TraumatologiaUniversidade Federal de São PauloSão PauloBrazil
  4. 4.Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  5. 5.Centro de Tecnologia Agropecuária, Instituto Socioambiental e dos Recursos HídricosUniversidade Federal Rural da AmazôniaBelémBrazil

Personalised recommendations