Clinical and Experimental Medicine

, Volume 15, Issue 1, pp 25–30 | Cite as

Increased TTS expression in patients with rheumatoid arthritis

  • Jiaxi Chen
  • Li Jun
  • Chen Shiyong
  • Hou Li
  • Ming Zhu
  • Bo Shen
Original Article
  • 302 Downloads

Abstract

Immune system activation is known to be involved in the progression of rheumatoid arthritis (RA). The aim of this work was to study the imbalance expressions of indoleamine 2,3-dioxygenase (IDO) and tryptophanyl-tRNA synthetase (TTS) with RA patients. Forty-nine RA patients and 49 healthy controls were studied. The expressions of IDO and TTS were analyzed by real-time quantitative polymerase chain reaction and flow cytometry in peripheral blood mononuclear cells. The expression of TTS mRNA increased significantly in RA patients when compared with healthy controls and correlated with erythrocyte sedimentation rate (r = 0.424, P < 0.01). In addition, we found TTS increased significantly mainly in CD3+ T cells in rheumatoid arthritis group. Increased TTS expressions from CD3+ T cells might link to a pathogenic mechanism involved in increasing survival of autoreactive T cells in RA patients. Determination of expressions of TTS may provide a better understanding of progression of the disease.

Keywords

Rheumatoid arthritis Indoleamine 2,3-dioxygenase Tryptophanyl-tRNA synthetase 

References

  1. 1.
    Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774CrossRefPubMedGoogle Scholar
  2. 2.
    Penberthy WT (2007) Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Curr Drug Metab 8(3):245–266CrossRefPubMedGoogle Scholar
  3. 3.
    Fleckner J, Martensen PM, Tolstrup AB et al (1995) JustesenJ. Differential regulation of the human, interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine 7(1):70–77CrossRefPubMedGoogle Scholar
  4. 4.
    Murray MF (2003) Tryptophan depletion and HIV infection: a metabolic link to pathogenesis. Lancet Infect Dis. 3(10):644–652CrossRefPubMedGoogle Scholar
  5. 5.
    Boasso A, Herbeuval JP, Hardy AW et al (2005) Regulation of indoleamine 2,3-dioxygenase and tryptophanyl tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 105(4):1574–1581CrossRefPubMedGoogle Scholar
  6. 6.
    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324CrossRefPubMedGoogle Scholar
  7. 7.
    Wang CY, Shi Y, Min YN et al (2011) Decreased IDO Activity and Increased TTS Expression Break Immune Tolerance in Patients with Immune Thrombocytopenia. J Clin Immunol 31(4):643–649CrossRefPubMedGoogle Scholar
  8. 8.
    Wang S, Mao C, Zhao Z et al (2009) Increased TTS abrogates IDO-mediated CD4+ T cells suppression in patients with Graves’ disease. Endocr. 36(1):119–125CrossRefGoogle Scholar
  9. 9.
    Zhu L, Ji F, Wang Y et al (2006) Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition. J Immunol. 177(11):8226–8233CrossRefPubMedGoogle Scholar
  10. 10.
    Munn DH, Sharma MD, Lee JR (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297(5588):1867–1870CrossRefPubMedGoogle Scholar
  11. 11.
    Williams CA, Harry RA, McLeod JD (2008) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 124(1):89–101CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Uyttenhove C, Pilotte L, Theate I (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. 9(10):1269–1274CrossRefGoogle Scholar
  13. 13.
    Curti A, Aluigi M, Pandolfi S (2007) Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 21(2):353–355CrossRefPubMedGoogle Scholar
  14. 14.
    Uyttenhove C, Pilotte L, Théate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274CrossRefPubMedGoogle Scholar
  15. 15.
    Baban B, Chandler PR, Sharma MD et al (2009) IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol. 183(4):2475–2483CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Favre D, Mold J, Hunt PW et al (2010) Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2(32):32–36Google Scholar
  17. 17.
    Romani L, Fallarino F, De Luca A et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451(7175):211–215CrossRefPubMedGoogle Scholar
  18. 18.
    Favre D, Mold J, Hunt PW et al (2010) Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2(32):32Google Scholar
  19. 19.
    Fallarino F, Grohmann U (2011) Using an ancient tool for igniting and propagating immune tolerance: IDO as an inducer and amplifier of regulatory T cell functions. Curr Med Chem 18(5):2215–2221CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma MD, Hou DY, Liu Y et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Jiaxi Chen
    • 1
  • Li Jun
    • 1
  • Chen Shiyong
    • 1
  • Hou Li
    • 1
  • Ming Zhu
    • 1
  • Bo Shen
    • 1
  1. 1.Department of Clinical Laboratory, Taizhou Hospital of Zhejiang ProvinceAffiliated Hospital of Wenzhou Medical CollegeTaizhouChina

Personalised recommendations