Clinical and Experimental Medicine

, Volume 14, Issue 3, pp 345–353 | Cite as

Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer

  • Dong Hoon Suh
  • Min A. Kim
  • Haeryoung Kim
  • Mi-Kyung Kim
  • Hee Seung Kim
  • Hyun Hoon Chung
  • Yong-Beom Kim
  • Yong Sang Song
Original Article

Abstract

This aim of this study was to evaluate the relationship between hexokinase II expression and chemoresistance in epithelial ovarian cancer. One hundred and eleven paraffin-embedded specimens from patients with epithelial ovarian cancer were immunohistochemically stained for hexokinase II. Subsequently, the association between hexokinase II overexpression and clinicopathologic characteristics including chemoresistance was assessed. Survival analyses were also performed for evaluating the prognostic value of hexokinase II overexpression. Tumor recurrence within 6 months after termination of first-line chemotherapy was considered to indicate chemoresistance. Hexokinase II overexpression was associated with chemoresistance (p = 0.029) and was an independent risk factor for chemoresistance [odds ratio (OR) 3.37; 95 % confidence interval (CI) 1.07–10.62; p = 0.038] along with non-optimal debulking surgery (OR 4.93; 95 % CI 1.43–16.98; p = 0.011). Hexokinase II overexpression was significantly associated with decreased progression-free survival (p = 0.002) and showed a similar trend for overall survival (p = 0.101). Cox regression analysis revealed that hexokinase II overexpression was an independent prognostic factor for early recurrence (hazard ratio 2.63; 95 % CI 1.40–4.92; p = 0.002). Our findings suggest that hexokinase II overexpression is associated with short progression-free survival, which could be associated with chemoresistance in epithelial ovarian cancer.

Keywords

Hexokinase Immunohistochemistry Drug resistance Recurrence Ovarian cancer 

Notes

Acknowledgments

This work was supported by grant from the SNUH Research Fund (No. 0320120350). This research was also supported by Basic Science Research Program (No. 2011-0025394), WCU (World Class University) program (R31-10056), and Priority Research Centers Program (No. 2009-0093820) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Conflict of interest

The authors indicate no potential conflict of interest.

References

  1. 1.
    Szegezdi E, Cahill S, Meyer M, O’Dwyer M, Samali A (2006) TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. Br J Cancer 94(3):398–406. doi:10.1038/sj.bjc.6602954 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Miller DS, Blessing JA, Krasner CN, Mannel RS, Hanjani P, Pearl ML, Waggoner SE, Boardman CH (2009) Phase II evaluation of pemetrexed in the treatment of recurrent or persistent platinum-resistant ovarian or primary peritoneal carcinoma: a study of the Gynecologic Oncology Group. J Clin Oncol 27(16):2686–2691. doi:10.1200/JCO.2008.19.2963 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Itamochi H (2010) Targeted therapies in epithelial ovarian cancer: molecular mechanisms of action. World J Biol Chem 1(7):209–220. doi:10.4331/wjbc.v1.i7.209 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Suh DH, Kim JW, Kim K, Kang SB (2010) Major clinical research advances in gynecologic cancer in 2010. J Gynecol Oncol 21(4):209–218. doi:10.3802/jgo.2010.21.4.209 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Suh DH, Kim MK, No JH, Chung HH, Song YS (2011) Metabolic approaches to overcoming chemoresistance in ovarian cancer. Ann N Y Acad Sci 1229:53–60. doi:10.1111/j.1749-6632.2011.06095.x PubMedCrossRefGoogle Scholar
  6. 6.
    Fabian C, Koetz L, Favaro E, Indraccolo S, Mueller-Klieser W, Sattler UG (2012) Protein profiles in human ovarian cancer cell lines correspond to their metabolic activity and to metabolic profiles of respective tumor xenografts. FEBS J 279(5):882–891. doi:10.1111/j.1742-4658.2012.08479.x PubMedCrossRefGoogle Scholar
  7. 7.
    Shulga N, Wilson-Smith R, Pastorino JG (2009) Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism. Cell Cycle 8(20):3355–3364PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Pedersen PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222. doi:10.1007/s10863-007-9094-x PubMedCrossRefGoogle Scholar
  9. 9.
    Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182. doi:10.1007/s10863-008-9148-8 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10..
    Kim EE (2004) Whole-body positron emission tomography and positron emission tomography/computed tomography in gynecologic oncology. Int J Gynecol Cancer 14(1):12–22PubMedCrossRefGoogle Scholar
  11. 11.
    Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol 19(1):17–24. doi:10.1016/j.semcancer.2008.11.006 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kitajima K, Suzuki K, Senda M, Kita M, Nakamoto Y, Onishi Y, Maeda T, Yoshikawa T, Ohno Y, Sugimura K (2011) FDG-PET/CT for diagnosis of primary ovarian cancer. Nucl Med Commun 32(7):549–553. doi:10.1097/MNM.0b013e328345b339 PubMedCrossRefGoogle Scholar
  13. 13.
    Schwarz JK, Grigsby PW, Dehdashti F, Delbeke D (2009) The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med 50(Suppl 1):64S–73S. doi:10.2967/jnumed.108.057257 PubMedCrossRefGoogle Scholar
  14. 14.
    Peng SY, Lai PL, Pan HW, Hsiao LP, Hsu HC (2008) Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep 19(4):1045–1053PubMedGoogle Scholar
  15. 15.
    Lyshchik A, Higashi T, Hara T, Nakamoto Y, Fujimoto K, Doi R, Imamura M, Saga T, Togashi K (2007) Expression of glucose transporter-1, hexokinase-II, proliferating cell nuclear antigen and survival of patients with pancreatic cancer. Cancer Investig 25(3):154–162. doi:10.1080/07357900701208931 CrossRefGoogle Scholar
  16. 16.
    Rho M, Kim J, Jee CD, Lee YM, Lee HE, Kim MA, Lee HS, Kim WH (2007) Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res 27(1A):251–258PubMedGoogle Scholar
  17. 17.
    Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57(2):170–178PubMedGoogle Scholar
  18. 18.
    Paudyal B, Oriuchi N, Paudyal P, Higuchi T, Nakajima T, Endo K (2008) Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-d-glucose positron emission tomography. Cancer Sci 99(2):260–266. doi:10.1111/j.1349-7006.2007.00683.x PubMedCrossRefGoogle Scholar
  19. 19.
    Gong L, Cui Z, Chen P, Han H, Peng J, Leng X (2011) Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med Oncol. doi:10.1007/s12032-011-9841-z Google Scholar
  20. 20.
    Neary CL, Pastorino JG (2010) Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem Biophys Res Commun 394(4):1075–1081. doi:10.1016/j.bbrc.2010.03.129 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Milane L, Duan Z, Amiji M (2011) Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell Int 11:3. doi:10.1186/1475-2867-11-3 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ahn KJ, Hwang HS, Park JH, Bang SH, Kang WJ, Yun M, Lee JD (2009) Evaluation of the role of hexokinase type II in cellular proliferation and apoptosis using human hepatocellular carcinoma cell lines. J Nucl Med 50(9):1525–1532PubMedCrossRefGoogle Scholar
  23. 23.
    Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208(2):313–326. doi:10.1084/jem.20101470 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hamada K, Tomita Y, Qiu Y, Zhang B, Ueda T, Myoui A, Higuchi I, Yoshikawa H, Aozasa K, Hatazawa J (2008) 18F-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II. Ann Nucl Med 22(8):699–705. doi:10.1007/s12149-008-0173-9 PubMedCrossRefGoogle Scholar
  25. 25.
    Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, Doi R, Hosotani R, Imamura M, Konishi J (2002) Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 43(2):173–180PubMedGoogle Scholar
  26. 26.
    Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786. doi:10.1038/sj.onc.1209603 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166–1173. doi:10.1038/sj.cdd.4400783 PubMedCrossRefGoogle Scholar
  28. 28.
    Kim JW, Gao P, Dang CV (2007) Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 26(2):291–298. doi:10.1007/s10555-007-9060-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Lim HY, Ho QS, Low J, Choolani M, Wong KP (2011) Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion 11(3):437–443. doi:10.1016/j.mito.2010.12.015 PubMedCrossRefGoogle Scholar
  30. 30.
    Karantanis D, Allen-Auerbach M, Czernin J (2012) Relationship among glycolytic phenotype, grade, and histological subtype in ovarian carcinoma. Clin Nucl Med 37(1):49–53. doi:10.1097/RLU.0b013e3182291e03 PubMedCrossRefGoogle Scholar
  31. 31.
    Ozcan A, Deveci MS, Oztas E, Dede M, Yenen MC, Korgun ET, Gunhan O (2005) Prognostic value of GLUT-1 expression in ovarian surface epithelial tumors: a morphometric study. Anal Quant Cytol Histol 27(4):181–186PubMedGoogle Scholar
  32. 32.
    Santillan A, Kim YW, Zahurak ML, Gardner GJ, Giuntoli RL 2nd, Shih IM, Bristow RE (2007) Differences of chemoresistance assay between invasive micropapillary/low-grade serous ovarian carcinoma and high-grade serous ovarian carcinoma. Int J Gynecol Cancer 17(3):601–606. doi:10.1111/j.1525-1438.2007.00820.x PubMedCrossRefGoogle Scholar
  33. 33.
    Schmeler KM, Sun CC, Bodurka DC, Deavers MT, Malpica A, Coleman RL, Ramirez PT, Gershenson DM (2008) Neoadjuvant chemotherapy for low-grade serous carcinoma of the ovary or peritoneum. Gynecol Oncol 108(3):510–514. doi:10.1016/j.ygyno.2007.11.013 PubMedCrossRefGoogle Scholar
  34. 34.
    Suh DH, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Kang SB (2012) Body mass index and survival in patients with epithelial ovarian cancer. J Obstet Gynaecol Res 38(1):70–76. doi:10.1111/j.1447-0756.2011.01628.x PubMedCrossRefGoogle Scholar
  35. 35.
    Lee HP (2007) Annual report of gynecologic cancer registry program in Korea for 2004. Korean J Obstet Gynecol 50(1):28–78Google Scholar
  36. 36.
    Jawhar NM (2009) Tissue microarray: a rapidly evolving diagnostic and research tool. Ann Saudi Med 29(2):123–127PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Shergill IS, Shergill NK, Arya M, Patel HR (2004) Tissue microarrays: a current medical research tool. Curr Med Res Opin 20(5):707–712. doi:10.1185/030079904125003412 PubMedCrossRefGoogle Scholar
  38. 38.
    El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C (2011) Sugar-free approaches to cancer cell killing. Oncogene 30(3):253–264. doi:10.1038/onc.2010.466 PubMedCrossRefGoogle Scholar
  39. 39.
    Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61(14):1250–1275. doi:10.1016/j.addr.2009.05.010 PubMedCrossRefGoogle Scholar
  40. 40.
    Milane L, Duan Z, Amiji M (2011) Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer. PLoS One 6(9):e24075. doi:10.1371/journal.pone.0024075 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Dong Hoon Suh
    • 1
    • 7
  • Min A. Kim
    • 2
  • Haeryoung Kim
    • 3
  • Mi-Kyung Kim
    • 1
  • Hee Seung Kim
    • 1
  • Hyun Hoon Chung
    • 1
  • Yong-Beom Kim
    • 4
  • Yong Sang Song
    • 1
    • 5
    • 6
  1. 1.Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulKorea
  2. 2.Department of PathologySeoul National University College of MedicineSeoulKorea
  3. 3.Department of PathologySeoul National University Bundang HospitalSeongnamKorea
  4. 4.Department of Obstetrics and GynecologySeoul National University Bundang HospitalSeongnamKorea
  5. 5.Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  6. 6.WCU Biomodulation Major, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
  7. 7.Department of Obstetrics and GynecologySeoul National University Bundang HospitalSeongnamKorea

Personalised recommendations