Clinical and Experimental Medicine

, Volume 13, Issue 4, pp 323–328 | Cite as

The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells

  • Jianjun Zhang
  • Zhichao Zheng
  • Yan Zhao
  • Tao Zhang
  • Xiaohu Gu
  • Wei Yang
Short Communication


The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.


HSP90 17-AAG Cell cycle arrest Apoptosis Cholangiocarcinoma 


  1. 1.
    Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, Gaudio E, Alvaro D (2010) Cholangiocarcinoma: update and future perspectives. Dig Liver Dis 42(4):253–260. doi:10.1016/j.dld.2009.12.008 PubMedCrossRefGoogle Scholar
  2. 2.
    Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD (2005) Cholangiocarcinoma. Lancet 366(9493):1303–1314. doi:10.1016/S0140-6736(05)67530-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Petrowsky H, Hong JC (2009) Current surgical management of hilar and intrahepatic cholangiocarcinoma: the role of resection and orthotopic liver transplantation. Transplant Proc 41(10):4023–4035. doi:10.1016/j.transproceed.2009.11.001 PubMedCrossRefGoogle Scholar
  4. 4.
    Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, Hruban RH, Lillemoe KD, Yeo CJ, Cameron JL (1996) Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg 224(4):463–473 (discussion 473–465)PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson C, Kim R (2009) Adjuvant therapy for resected extrahepatic cholangiocarcinoma: a review of the literature and future directions. Cancer Treat Rev 35(4):322–327. doi:10.1016/j.ctrv.2008.11.009 PubMedCrossRefGoogle Scholar
  6. 6.
    Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410(3):439–453. doi:10.1042/BJ20071640 PubMedCrossRefGoogle Scholar
  7. 7.
    Pratt WB, Morishima Y, Osawa Y (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem 283(34):22885–22889. doi:10.1074/jbc.R800023200 PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727. doi:10.1016/j.cell.2004.12.024 PubMedCrossRefGoogle Scholar
  9. 9.
    McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135. doi:10.1016/j.cell.2007.07.036 PubMedCrossRefGoogle Scholar
  10. 10.
    Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3(8):1021–1030PubMedGoogle Scholar
  11. 11.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772. doi:10.1038/nrc1716 PubMedCrossRefGoogle Scholar
  12. 12.
    Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3(3):213–217. doi:10.1016/S1535-6108(03)00029-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850PubMedCrossRefGoogle Scholar
  14. 14.
    Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15(1):9–14. doi:10.1158/1078-0432.CCR-08-0132 PubMedCrossRefGoogle Scholar
  15. 15.
    Gimenez Ortiz A, Montalar Salcedo J (2010) Heat shock proteins as targets in oncology. Clin Transl Oncol 12(3):166–173PubMedCrossRefGoogle Scholar
  16. 16.
    Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J, Timm M, Ngo H, Lu G, Huston A, Ehrlich LA, Dimmock E, Lentzsch S, Hideshima T, Roodman GD, Anderson KC, Ghobrial IM (2006) Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 12(22):6826–6835. doi:10.1158/1078-0432.CCR-06-1331 PubMedCrossRefGoogle Scholar
  17. 17.
    Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ, Younes A (2006) Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin’s lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 12(2):584–590. doi:10.1158/1078-0432.CCR-05-1194 PubMedCrossRefGoogle Scholar
  18. 18.
    Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee WC (2010) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53(1):3–17. doi:10.1021/jm9004708 PubMedCrossRefGoogle Scholar
  19. 19.
    Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, Bacik J, Motzer RJ (2006) A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs 24(6):543–546. doi:10.1007/s10637-006-9208-z PubMedCrossRefGoogle Scholar
  20. 20.
    Munster PN, Srethapakdi M, Moasser MM, Rosen N (2001) Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res 61(7):2945–2952PubMedGoogle Scholar
  21. 21.
    Gossett DR, Bradley MS, Jin X, Lin J (2005) 17-Allyamino-17-demethoxygeldanamycin and 17-NN-dimethyl ethylene diamine-geldanamycin have cytotoxic activity against multiple gynecologic cancer cell types. Gynecol Oncol 96(2):381–388. doi:10.1016/j.ygyno.2004.10.009 PubMedCrossRefGoogle Scholar
  22. 22.
    Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, Dietmaier W, Bolder U, Schlitt HJ, Geissler EK, Stoeltzing O (2007) Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther 6(3):1123–1132. doi:10.1158/1535-7163.MCT-06-0628 PubMedCrossRefGoogle Scholar
  23. 23.
    Watanabe G, Behrns KE, Kim JS, Kim RD (2009) Heat shock protein 90 inhibition abrogates hepatocellular cancer growth through cdc2-mediated G2/M cell cycle arrest and apoptosis. Cancer Chemother Pharmacol 64(3):433–443. doi:10.1007/s00280-008-0888-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Wu X, Wanders A, Wardega P, Tinge B, Gedda L, Bergstrom S, Sooman L, Gullbo J, Bergqvist M, Hesselius P, Lennartsson J, Ekman S (2009) Hsp90 is expressed and represents a therapeutic target in human oesophageal cancer using the inhibitor 17-allylamino-17-demethoxygeldanamycin. Br J Cancer 100(2):334–343. doi:10.1038/sj.bjc.6604855 PubMedCrossRefGoogle Scholar
  25. 25.
    Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100(10):1523–1529. doi:10.1038/sj.bjc.6605066 PubMedCrossRefGoogle Scholar
  26. 26.
    Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, Zuhowski EG, Whitlock JA, Hunger SP, Narendran A, Katzenstein HM, Arceci RJ, Boklan J, Herzog CE, Whitesell L, Ivy SP, Trippett TM (2007) Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res 13(6):1783–1788. doi:10.1158/1078-0432.CCR-06-1892 PubMedCrossRefGoogle Scholar
  27. 27.
    Ramanathan RK, Trump DL, Eiseman JL, Belani CP, Agarwala SS, Zuhowski EG, Lan J, Potter DM, Ivy SP, Ramalingam S, Brufsky AM, Wong MK, Tutchko S, Egorin MJ (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11(9):3385–3391. doi:10.1158/1078-0432.CCR-04-2322 PubMedCrossRefGoogle Scholar
  28. 28.
    Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10):4003–4009PubMedGoogle Scholar
  29. 29.
    Burger AM, Fiebig HH, Stinson SF, Sausville EA (2004) 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs 15(4):377–387PubMedCrossRefGoogle Scholar
  30. 30.
    Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7(3):249–257PubMedCrossRefGoogle Scholar
  31. 31.
    Okamoto J, Mikami I, Tominaga Y, Kuchenbecker KM, Lin YC, Bravo DT, Clement G, Yagui-Beltran A, Ray MR, Koizumi K, He B, Jablons DM (2008) Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol 3(10):1089–1095. doi:10.1097/JTO.0b013e3181839693 PubMedCrossRefGoogle Scholar
  32. 32.
    Dash BC, El-Deiry WS (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol 25(8):3364–3387. doi:10.1128/MCB.25.8.3364-3387.2005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jianjun Zhang
    • 1
  • Zhichao Zheng
    • 1
  • Yan Zhao
    • 1
  • Tao Zhang
    • 1
  • Xiaohu Gu
    • 1
  • Wei Yang
    • 1
  1. 1.The Third Department of SurgeryLiaoning Cancer Hospital and InstituteShenyangPeople’s Republic of China

Personalised recommendations