Clinical and Experimental Medicine

, Volume 13, Issue 3, pp 221–224 | Cite as

hTERT and TP53 deregulation in intestinal-type gastric carcinogenesis in non-human primates

  • Mariana Ferreira LealEmail author
  • Danielle Queiroz Calcagno
  • André Salim Khayat
  • Tanielly Cristina Raiol Silva
  • José Augusto Pereira Carneiro Muniz
  • Paulo Pimentel Assumpção
  • Marília de Arruda Cardoso Smith
  • Rommel Rodríguez Burbano
Letter to the Editor


Despite the high incidence, the molecular events involved in intestinal-type gastric carcinogenesis remains unclear. We previously established an intestinal-type gastric carcinogenesis model in Cebus apella, a New World monkey. In the present study, we evaluated hTERT and TP53 mRNA expression, as well as their protein immunoreactivity, in normal mucosa, non-atrophic gastritis, atrophic gastritis, intestinal metaplasia, and intestinal-type gastric cancer samples of non-human primates treated with N-methyl-nitrosourea. In addition, we evaluated the number of TP53 copies in these samples. Although hTERT immunoreactivity was only detected in gastric cancer, a continuous increase of hTERT mRNA expression was observed from non-atrophic gastritis to gastric tumors. No sample presented p53 immunoreactivity. However, we also observed a continuous decrease of TP53 mRNA expression during the sequential steps of gastric carcinogenesis. Moreover, loss of TP53 copies was observed in intestinal metaplasia and gastric cancer samples. Our study highlights that hTERT and TP53 have a key role in intestinal-type gastric cancer initiation.


hTERT TP53 Gastric carcinogenesis Non-human primates Precancerous lesions Animal model 



This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; MACS and RRB) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; MFL and DQC) as grants and fellowship awards.

Conflict of interest

All authors declare that they have no conflicts of interest.


  1. 1.
    Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49PubMedGoogle Scholar
  2. 2.
    Tahara E (2004) Genetic pathways of two types of gastric cancer. IARC Sci Publ (157):327–349Google Scholar
  3. 3.
    Vauhkonen M, Vauhkonen H, Sipponen P (2006) Pathology and molecular biology of gastric cancer. Best Pract Res Clin Gastroenterol 20:651–674. doi: 10.1016/j.bpg.2006.03.016 Google Scholar
  4. 4.
    Takayama S, Thorgeirsson UP, Adamson RH (2008) Chemical carcinogenesis studies in nonhuman primates. Proc Jpn Acad Ser B Phys Biol Sci 84:176–188. doi: 10.2183/pjab.84.176 PubMedCrossRefGoogle Scholar
  5. 5.
    da Costa Jde F, Leal MF, Silva TC, Andrade EF Jr, Rezende AP et al (2011) Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS ONE 6:e21988. doi: 10.1371/journal.pone.0021988 CrossRefGoogle Scholar
  6. 6.
    Assumpcao PP, Ishak G, Chen ES, Takeno SS, Leal MF, et al. (2006) Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet Cytogenet 169:45–49. doi: 10.1016/j.cancergencyto.2006.03.019
  7. 7.
    Burbano RR, Assumpcao PP, Leal MF, Calcagno DQ, Guimaraes AC et al (2006) C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res 26:2909–2914PubMedGoogle Scholar
  8. 8.
    Calcagno DQ, Leal MF, Demachki S, Araujo MT, Freitas FW, et al. (2010) MYC in gastric carcinoma and intestinal metaplasia of young adults. Cancer Genet Cytogenet 202:63–66. doi: 10.1016/j.cancergencyto.2010.05.020 Google Scholar
  9. 9.
    Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES et al (2006) Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol 12:6207–6211PubMedGoogle Scholar
  10. 10.
    Calcagno DQ, Leal MF, Taken SS, Assumpcao PP, Demachki S et al (2005) Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res 25:4069–4074PubMedGoogle Scholar
  11. 11.
    Costa Raiol LC, Figueira Silva EC, Mendes da Fonseca D, Leal MF, Guimaraes AC, et al. (2008) Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet 181:31–35. doi: 10.1016/j.cancergencyto.2007.10.011 Google Scholar
  12. 12.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129PubMedCrossRefGoogle Scholar
  13. 13.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, et al. (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264. doi: 10.1016/j.semcancer.2006.07.014 Google Scholar
  14. 14.
    Khayat AS, Guimaraes AC, Calcagno DQ, Seabra AD, Lima EM et al (2009) Interrelationship between TP53 gene deletion, protein expression and chromosome 17 aneusomy in gastric adenocarcinoma. BMC Gastroenterol 9:55. doi: 10.1186/1471-230X-9-55 PubMedCrossRefGoogle Scholar
  15. 15.
    Gigek CO, Leal MF, Silva PN, Lisboa LC, Lima EM et al (2009) hTERT methylation and expression in gastric cancer. Biomarkers 14:630–636. doi: 10.3109/13547500903225912 PubMedCrossRefGoogle Scholar
  16. 16.
    Arocho A, Chen B, Ladanyi M, Pan Q (2006) Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol 15:56–61PubMedCrossRefGoogle Scholar
  17. 17.
    Lan J, Xiong YY, Lin YX, Wang BC, Gong LL et al (2003) Helicobacter pylori infection generated gastric cancer through p53-Rb tumor-suppressor system mutation and telomerase reactivation. World J Gastroenterol 9:54–58PubMedGoogle Scholar
  18. 18.
    Wang W, Luo HS, Yu BP (2004) Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World J Gastroenterol 10:177–181PubMedGoogle Scholar
  19. 19.
    Cassaro M, Rugge M, Tieppo C, Giacomelli L, Velo D et al (2007) Indefinite for non-invasive neoplasia lesions in gastric intestinal metaplasia: the immunophenotype. J Clin Pathol 60:615–621. doi: 10.1136/jcp.2006.040386 PubMedCrossRefGoogle Scholar
  20. 20.
    Gulmann C, Lantuejoul S, Grace A, Leader M, Patchett S, et al. (2005) Telomerase activity in proximal and distal gastric neoplastic and preneoplastic lesions using immunohistochemical detection of hTERT. Dig Liver Dis 37:439–445. doi: 10.1016/j.dld.2005.01.008
  21. 21.
    Jong HS, Park YI, Kim S, Sohn JH, Kang SH et al (1999) Up-regulation of human telomerase catalytic subunit during gastric carcinogenesis. Cancer 86:559–565PubMedCrossRefGoogle Scholar
  22. 22.
    Chen YJ, Shih LS, Chen YM (1998) Quantitative analysis of CDKN2, p53 and retinoblastoma mRNA in human gastric carcinoma. Int J Oncol 13:249–254PubMedGoogle Scholar
  23. 23.
    Kyo S, Takakura M, Fujiwara T, Inoue M (2008) Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 99:1528–1538. doi: 10.1111/j.1349-7006.2008.00878.x PubMedCrossRefGoogle Scholar
  24. 24.
    Williams L, Jenkins GJ, Doak SH, Fowler P, Parry EM et al (2005) Fluorescence in situ hybridisation analysis of chromosomal aberrations in gastric tissue: the potential involvement of helicobacter pylori. Br J Cancer 92:1759–1766. doi: 10.1038/sj.bjc.6602533 PubMedCrossRefGoogle Scholar
  25. 25.
    Leal MF, Calcagno DQ, Borges da Costa Jde F, Jde F, Silva TC, Khayat AS et al (2010) MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. J Biomed Biotechnol 2011:631268. doi: 10.1155/2011/631268 Google Scholar
  26. 26.
    Leal MF, Martins do Nascimento JL, da Silva CE, Vita Lamarao MF, Calcagno DQ, et al. (2009) Establishment and conventional cytogenetic characterization of three gastric cancer cell lines. Cancer Genet Cytogenet 195:85–91. doi: 10.1016/j.cancergencyto.2009.04.020 Google Scholar
  27. 27.
    Ribeiro HF, Alcantara DF, Matos LA, Sousa JM, Leal MF, et al. (2011) Cytogenetic characterization and evaluation of c-MYC gene amplification in PG100, a new Brazilian gastric cancer cell line. Braz J Med Biol Res 43:717–721. doi: 10.1590/S0100-879X2010007500068 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mariana Ferreira Leal
    • 1
    Email author
  • Danielle Queiroz Calcagno
    • 1
  • André Salim Khayat
    • 2
  • Tanielly Cristina Raiol Silva
    • 2
  • José Augusto Pereira Carneiro Muniz
    • 3
  • Paulo Pimentel Assumpção
    • 4
  • Marília de Arruda Cardoso Smith
    • 1
  • Rommel Rodríguez Burbano
    • 2
  1. 1.Disciplina de Genética, Departamento de Morfologia e GenéticaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Laboratório de Citogenética Humana, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  3. 3.Centro Nacional de PrimatasMinistério da SaúdeAnanindeuaBrazil
  4. 4.Unidade de Alta Complexidade em OncologiaHospital Universitário João de Barros Barreto, Universidade Federal do ParáBelémBrazil

Personalised recommendations