Advertisement

Clinical and Experimental Medicine

, Volume 13, Issue 2, pp 119–126 | Cite as

Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells

  • Emre Özgür
  • Ufuk Mert
  • Mustafa Isin
  • Murat Okutan
  • Nejat Dalay
  • Ugur Gezer
Original Article

Abstract

Long non-coding RNAs (lncRNAs) are emerging as new players in cancer as they are implicated in diverse biological processes and aberrantly expressed in a variety of human cancers. No data are available on their function under genotoxic stress-induced apoptosis. In this work, we assessed the behavior of some candidate lncRNAs (HOTAIR, MALAT1, TUG1, lincRNA-p21, GAS5, MEG3, PANDA, UCA1, ANRIL, and CCND1) during DNA damage-induced cell death in HeLa and caspase-3-deficient MCF-7 cells using bleomycin (BLM) and γ-radiation to induce DNA damage. Cells were incubated in the presence of BLM for 24 h or irradiated. Apoptosis was analyzed by measurement of oligonucleosomal fragmentation of nuclear DNA. Our results reveal that basal RNA expression levels as well as the changes in the lncRNA expression rates during genotoxic stress-induced apoptosis were cell-type and/or DNA-damaging agent-specific. Generally, we found that some of the RNA molecules (HOTAIR and MALAT1) are down-regulated while many of them (lincRNA-p21, GAS5, MEG3, ANRIL, and ncRNA-CCND1) are up-regulated and some others (TUG1, UCA1, and PANDA) not affected. The decline in the expression of HOTAIR (approx. twofold, p < 0.01) and MALAT1 (approx 1.6-fold, p < 0.01) was clearly evident in BLM-treated HeLa and MCF cells (only HOTAIR, fivefold, p < 0.01). For lincRNA-p21, ncRNA-CCND1, and MEG3, a similar up-regulation pattern was obvious in both cell lines where the increase was generally more pronounced in BLM-treated cells. Interestingly, the induction of ANRIL and GAS5 was mainly restricted to irradiated cells. In conclusion, our findings reveal a differential regulation of individual lncRNAs during genotoxic stress-induced apoptosis.

Keywords

Long non-coding RNAs Genotoxic stress Apoptosis Gene expression HeLa cells MCF-7 cells 

Notes

Acknowledgments

This work was supported by Istanbul University Research Fund (Projects # 4033 and 12527) and is part of the M.Sc. thesis of Emre Özgür.

Conflict of interest

None.

References

  1. 1.
    Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459CrossRefPubMedGoogle Scholar
  2. 2.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227CrossRefPubMedGoogle Scholar
  3. 3.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefPubMedGoogle Scholar
  4. 4.
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641CrossRefPubMedGoogle Scholar
  5. 5.
    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNAs in human carcinomas. Mol Cancer 10:38CrossRefPubMedGoogle Scholar
  6. 6.
    Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71:3–7CrossRefPubMedGoogle Scholar
  7. 7.
    Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629CrossRefPubMedGoogle Scholar
  8. 8.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409CrossRefPubMedGoogle Scholar
  9. 9.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742CrossRefPubMedGoogle Scholar
  11. 11.
    Wang F, Li X, Xie X, Zhao L, Chen W (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582:1919–1927CrossRefPubMedGoogle Scholar
  12. 12.
    Song X, Wang X, Arai S, Kurokawa R (2012) Promoter-associated noncoding RNA from the CCND1 promoter. Methods Mol Biol 809:609–622CrossRefPubMedGoogle Scholar
  13. 13.
    Williams GT, Mourtada-Maarabouni M, Farzaneh F (2011) A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans 3:482–486CrossRefGoogle Scholar
  14. 14.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076CrossRefPubMedGoogle Scholar
  15. 15.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693CrossRefPubMedGoogle Scholar
  16. 16.
    Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674CrossRefPubMedGoogle Scholar
  17. 17.
    Wilusz JE, Freier SM, Spector DL (2008) 3’ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932CrossRefPubMedGoogle Scholar
  18. 18.
    Jänicke RU, Engels IH, Dunkern T, Kaina B, Schulze-Osthoff K, Porter AG (2001) Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene 20:5043–5053CrossRefPubMedGoogle Scholar
  19. 19.
    Henner WD, Grunberg SM, Haseltine WA (1982) Sites and structure of gamma-radiation induced DNA strand breaks. J Biol Chem 257:11750–11754PubMedGoogle Scholar
  20. 20.
    Dutta A, Chakraborty A, Saha A, Ray S, Chatterjee A (2005) Interaction of radiation- and bleomycin-induced lesions and influence of glutathione level on the interaction. Mutagenesis 20:329–335CrossRefPubMedGoogle Scholar
  21. 21.
    Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360CrossRefPubMedGoogle Scholar
  22. 22.
    Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617CrossRefPubMedGoogle Scholar
  23. 23.
    Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208CrossRefPubMedGoogle Scholar
  24. 24.
    Jänicke RU (2009) MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat 117:219–221CrossRefPubMedGoogle Scholar
  25. 25.
    Semenov DV, Aronov PA, Kuligina EV, Potapenko MO, Richter VA (2004) Oligonucleosome DNA fragmentation of caspase 3 deficient MCF-7 cells in palmitate-induced apoptosis. Nucleosides Nucleotides Nucleic Acids 23:831–836CrossRefPubMedGoogle Scholar
  26. 26.
    Mc Gee MM, Hyland E, Campiani G, Ramunno A, Nacci V, Zisterer DM (2002) Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Lett 515:66–70CrossRefPubMedGoogle Scholar
  27. 27.
    Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454:126–130CrossRefPubMedGoogle Scholar
  28. 28.
    He S, Liu S, Zhu H (2011) The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evol Biol 11:102CrossRefPubMedGoogle Scholar
  29. 29.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y, Zhou Y, Klibanski A (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151:939–947CrossRefPubMedGoogle Scholar
  31. 31.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Emre Özgür
    • 1
  • Ufuk Mert
    • 1
  • Mustafa Isin
    • 1
  • Murat Okutan
    • 2
  • Nejat Dalay
    • 1
  • Ugur Gezer
    • 1
  1. 1.Department of Basic Oncology, Institute of OncologyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Radiation Physics, Institute of OncologyIstanbul UniversityIstanbulTurkey

Personalised recommendations