Clinical and Experimental Medicine

, Volume 10, Issue 2, pp 93–98

Intussusceptive microvascular growth in human glioma

  • Beatrice Nico
  • Enrico Crivellato
  • Diego Guidolin
  • Tiziana Annese
  • Vito Longo
  • Nicoletta Finato
  • Angelo Vacca
  • Domenico Ribatti
Original Article


Intussusceptive microvascular growth (IMG), which occurs by splitting of the existing vasculature by transluminal pillars or transendothelial bridges, has been demonstrated in several tumors such as colon and mammary carcinomas, melanoma and B-cell non-Hodgkin’s lymphomas. In this study, we have correlated in human glioma the extent of angiogenesis, evaluated as microvascular density, the immunoreactivity of tumor cells to vascular endothelial growth factor (VEGF), vessel diameter and IMG to the tumor stage. Results demonstrate for the first time a relationship in human glioma progression between angiogenesis, VEGF immunoreactivity of tumor cells, vessel diameter and the number of connections of intraluminal tissue folds with the opposite vascular wall, expression of IMG and suggest that IMG could be a mechanism of compensatory vascular growth occurring in human glioma. The advantages are that (1) blood vessels are generated more rapidly; (2) it is energetically and metabolically more economic; (3) the capillaries thereby formed are less leaky.


Glioblastoma Intussusceptive microvascular growth Tumor growth Vascular endothelial growth factor 


  1. 1.
    Ribatti D, Vacca A, Dammacco F (1999) The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1:293–302CrossRefPubMedGoogle Scholar
  2. 2.
    Risau W (1997) Mechanism of angiogenesis. Nature 386:671–674CrossRefPubMedGoogle Scholar
  3. 3.
    Burri PH, Djonov V (2002) Intussusceptive angiogenesis—the alternative to capillary sprouting. Mol Aspects Med 23:S1–S27CrossRefPubMedGoogle Scholar
  4. 4.
    Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45CrossRefPubMedGoogle Scholar
  5. 5.
    van Groningen JP, Wenink AC, Testers LH (1991) Myocardial capillaries: increase in number by splitting of existing vessels. Anat Embryol 184:65–70CrossRefPubMedGoogle Scholar
  6. 6.
    Patan S, Haenni B, Burri PH (1993) Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol 187:121–130CrossRefPubMedGoogle Scholar
  7. 7.
    Crivellato E, Nico B, Vacca A, Djonov V, Presta M, Ribatti D (2004) Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo. Leukemia 18:331–336CrossRefPubMedGoogle Scholar
  8. 8.
    Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51:260–272CrossRefPubMedGoogle Scholar
  9. 9.
    Djonov V, Andres AC, Ziemiecki A (2001) Vascular remodeling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 52:182–189CrossRefPubMedGoogle Scholar
  10. 10.
    Crivellato E, Nico B, Vacca A, Ribatti D (2003) B-cell non-Hodgkin’s lymphomas express heterogeneous patterns of neovascularization. Haematologica 88:671–678PubMedGoogle Scholar
  11. 11.
    Ribatti D, Nico B, Floris C et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14:81–84PubMedGoogle Scholar
  12. 12.
    Kleihues P, Cavanee WK (2000) Astrocytic tumors. In: Kleihues P, Cavanee WK (eds) Pathology and genetics of tumors of the nervous system. World Health Organization Classification of Tumours. ISN Neuropath Press, Basel, Switzerland, pp 9–52Google Scholar
  13. 13.
    Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347CrossRefPubMedGoogle Scholar
  14. 14.
    Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120CrossRefPubMedGoogle Scholar
  15. 15.
    Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310PubMedCrossRefGoogle Scholar
  16. 16.
    Bernsen HJJA, Rijken PFJW, Peters JPW, Bakker H, van der Kogel A (1998) Delayed vascular changes after antiangiogenic therapy with anti-vascular endothelial growth factor antibodies in human glioma xenografts in nude mice. Neurosurgery 43:570–575CrossRefPubMedGoogle Scholar
  17. 17.
    Rubenstein JL, Kim J, Ozawa T et al (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314CrossRefPubMedGoogle Scholar
  18. 18.
    Ribatti D, Nico B, Crivellato E, Vacca A (2007) The structure of the vascular network of tumors. Cancer Lett 248:18–23CrossRefPubMedGoogle Scholar
  19. 19.
    Sundbrg C, Nagy JA, Brown LF et al (2001) Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 158:1145–1160Google Scholar
  20. 20.
    Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3:255–268CrossRefPubMedGoogle Scholar
  21. 21.
    Elias H, Hyde DM (1983) Stereological measurements of isotropic structures. In: Elias H, Hyde DM (eds) A guide to practical stereology. Basel, Karger, pp 22–44Google Scholar
  22. 22.
    Guidolin D, Zunarelli E, Genedani S, Trentini GP, De Gaetani C, Fuxe K, Benegiamo C, Agnati LF (2008) Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain. Neurobiol Aging 29:926–936CrossRefPubMedGoogle Scholar
  23. 23.
    Semela D, Piguet AC, Kolev M et al (2007) Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 46:840–848CrossRefPubMedGoogle Scholar
  24. 24.
    Hlushchuk R, Riesterer O, Baum O et al (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173:1173–1185CrossRefPubMedGoogle Scholar
  25. 25.
    Kurz H, Burri PH, Djonov V (2003) Angiogenesis and vascular remodeling by intussusception: form to function. News Physiol Sci 18:65–70PubMedGoogle Scholar
  26. 26.
    Drake CJ, Little CD (1999) VEGF and vascular fusion: implications for normal and pathological vessels. J Histochem Cytochem 74:1351–1355Google Scholar
  27. 27.
    Nakatsu MN, Sainson RC, Perez-del-Pulgar S et al (2003) VEGF (121) and VEGF (165) regulate blood vessel diameter through vascular endothelial growth factor receptor-2 in an in vitro angiogenesis model. Lab Invest 83:1873–1885CrossRefPubMedGoogle Scholar
  28. 28.
    Breier G, Risau W (1996) Angiogenesis in the developing brain and brain tumors. Trends Exp Med 6:362–376Google Scholar
  29. 29.
    Drake CJ, Little CD (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92:7657–7661CrossRefPubMedGoogle Scholar
  30. 30.
    Makanya AN, Hlushchuk R, Djonov V (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12:113–123CrossRefPubMedGoogle Scholar
  31. 31.
    Thurston G (2002) Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat 200:575–580CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Beatrice Nico
    • 1
  • Enrico Crivellato
    • 2
  • Diego Guidolin
    • 3
  • Tiziana Annese
    • 1
  • Vito Longo
    • 4
  • Nicoletta Finato
    • 5
  • Angelo Vacca
    • 4
  • Domenico Ribatti
    • 1
  1. 1.Department of Human Anatomy and HistologyUniversity of Bari Medical SchoolBariItaly
  2. 2.Department of Medical and Morphological Research, Section of AnatomyUniversity of Udine Medical SchoolUdineItaly
  3. 3.Department of Human Anatomy and Physiology, Section of AnatomyUniversity of Padua Medical SchoolPaduaItaly
  4. 4.Department of Internal Medicine and Clinical OncologyUniversity of Bari Medical SchoolBariItaly
  5. 5.Department of Medical and Morphological Research, Section of PathologyUniversity of Udine Medical SchoolUdineItaly

Personalised recommendations