Advertisement

Apolipoprotein A1 gene polymorphisms as risk factors for hypertension and obesity

  • Elizabeth Suchi Chen
  • Diego Robles Mazzotti
  • Tatiane Katsue Furuya
  • Maysa Seabra Cendoroglo
  • Luiz Roberto Ramos
  • Lara Quirino Araujo
  • Rommel Rodriguez Burbano
  • Marília de Arruda Cardoso SmithEmail author
Original Article

Abstract

Several polymorphisms in apolipoprotein A1 (APOA1) gene have been associated with metabolic diseases. Increased transcription efficiency was observed in −75A allele carriers compared to −75G allele homozygotes. +83C allele was associated with higher body mass index and waist-to-hip ratio in type II diabetes subjects. −75G/A and +83C/T polymorphisms were analyzed by RFLP-PCR in 334 individuals from a Brazilian elderly cohort. APOA1 polymorphisms were associated with age-related morbidities, as well as with triglycerides, total cholesterol, HDL, VLDL, LDL, creatinine, urea, albumin, glycated hemoglobin and fasting glucose serum levels. Allele frequencies were 0.102 and 0.21, respectively, for −75A and +83T. −75G allele showed significant association with hypertension (P = 0.001). An association between +83C allele and obesity was observed (P = 0.040) and this allele also showed an association with hypertension in the presence of cardiovascular disease (P = 0.047). Moreover, +83T allele was associated with lower glycated hemoglobin values (P = 0.026). To our knowledge, there is no data associating this polymorphism with glycated hemoglobin. Furthermore, individuals carrying AT haplotype have lower risk for developing hypertension (P = 0.0002), while GT haplotype carriers present decreased risk to develop obesity comparing to GC haplotype (P = 0.025). APOA1 polymorphisms analysis may be a useful tool to identify risk factors for subjects and families and clarify the physiopathological role of these polymorphisms in age-related diseases, such as hypertension and obesity.

Keywords

APOA1 polymorphisms Hypertension Obesity Glycated hemoglobin 

Notes

Acknowledgments

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Coordenadoria de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES, Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil).

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

  1. 1.
    Prado RR, Nascimento AF, Souza MFM (2006) Brazil Health 2006: an analysis of the health situation in Brazil. Editora MS, BrasíliaGoogle Scholar
  2. 2.
    Hokanson JE, Austin MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3:213–219PubMedCrossRefGoogle Scholar
  3. 3.
    Steinberg D, Gotto AM Jr (1999) Preventing coronary artery disease by lowering cholesterol levels: fifty years from bench to bedside. JAMA 282:2043–2050PubMedCrossRefGoogle Scholar
  4. 4.
    Eichenbaum-Voline S, Olivier M, Jones EL, Naoumova RP, Jones B, Gau B, Patel HN, Seed M, Betteridge DJ, Galton DJ, Rubin EM, Scott J, Shoulders CC, Pennacchio LA (2004) Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 24:167–174PubMedCrossRefGoogle Scholar
  5. 5.
    Mar R, Pajukanta P, Allayee H, Groenendijk M, Dallinga-Thie G, Krauss RM, Sinsheimer JS, Cantor RM, de Bruin TW, Lusis AJ (2004) Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 94:993–999PubMedCrossRefGoogle Scholar
  6. 6.
    Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE (2002) Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 11:3039–3046PubMedCrossRefGoogle Scholar
  7. 7.
    Garasto S, Rose G, Derango F, Berardelli M, Corsonello A, Feraco E, Mari V, Maletta R, Bruni A, Franceschi C, Carotenuto L, De Benedictis G (2003) The study of APOA1, APOC3 and APOA4 variability in healthy ageing people reveals another paradox in the oldest old subjects. Ann Hum Genet 67:54–62PubMedCrossRefGoogle Scholar
  8. 8.
    Chien KL, Chen MF, Hsu HC, Su TC, Chang WT, Lee CM, Lee YT (2008) Genetic association study of APOA1/C3/A4/A5 gene cluster and haplotypes on triglyceride and HDL cholesterol in a community-based population. Clin Chim Acta 388:78–83PubMedCrossRefGoogle Scholar
  9. 9.
    Srivastava RA, Srivastava N (2000) High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem 209:131–144PubMedCrossRefGoogle Scholar
  10. 10.
    Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, Wilson PW, Schaefer EJ, Tucker K (2002) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 75:38–46PubMedGoogle Scholar
  11. 11.
    Florvall G, Basu S, Larsson A (2006) Apolipoprotein A1 is a stronger prognostic marker than are HDL and LDL cholesterol for cardiovascular disease and mortality in elderly men. J Gerontol A Biol Sci Med Sci 61:1262–1266PubMedGoogle Scholar
  12. 12.
    Wang XL, Badenhop RB, Sim AS, Wilcken DE (1998) The effect on transcription efficiency of the apolipoprotein AI gene of DNA variants at the 5′ untranslated region. Int J Clin Lab Res 28:235–241PubMedCrossRefGoogle Scholar
  13. 13.
    Talmud PJ, Ye S, Humphries SE (1994) Polymorphism in the promoter region of the apolipoprotein AI gene associated with differences in apolipoprotein AI levels: the European Atherosclerosis Research Study. Genet Epidemiol 11:265–280PubMedCrossRefGoogle Scholar
  14. 14.
    Kamboh MI, Aston CE, Nestlerode CM, McAllister AE, Hamman RF (1996) Haplotype analysis of two APOA1/MspI polymorphisms in relation to plasma levels of apo A-I and HDL-cholesterol. Atherosclerosis 127:255–262PubMedCrossRefGoogle Scholar
  15. 15.
    Pulkkinen A, Viitanen L, Kareinen A, Lehto S, Laakso M (2000) MspI polymorphism at +83 bp in intron 1 of the human apolipoprotein A1 gene is associated with elevated levels of HDL cholesterol and apolipoprotein A1 in nondiabetic subjects but not in type 2 diabetic patients with coronary heart disease. Diabetes Care 23:791–795PubMedCrossRefGoogle Scholar
  16. 16.
    Chhabra S, Narang R, Lakshmy R, Das N (2005) APOA1-75 G to A substitution associated with severe forms of CAD, lower levels of HDL and apoA-I among Northern Indians. Dis Markers 21:169–174PubMedGoogle Scholar
  17. 17.
    Morcillo S, Cardona F, Rojo-Martinez G, Esteva I, Ruiz-de-Adana MS, Tinahones F, Gomez-Zumaquero JM, Soriguer F (2005) Association between MspI polymorphism of the APO AI gene and type 2 diabetes mellitus. Diabet Med 22:782–788PubMedCrossRefGoogle Scholar
  18. 18.
    Wang XL, Badenhop R, Humphrey KE, Wilcken DE (1995) C to T and/or G to A transitions are responsible for loss of a MspI restriction site at the 5′-end of the human apolipoprotein AI gene. Hum Genet 95:473–474PubMedCrossRefGoogle Scholar
  19. 19.
    Wang XL, Badenhop R, Humphrey KE, Wilcken DE (1996) New MspI polymorphism at +83 bp of the human apolipoprotein AI gene: association with increased circulating high density lipoprotein cholesterol levels. Genet Epidemiol 13:1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Ma YQ, Thomas GN, Ng MC, Critchley JA, Cockram CS, Chan JC, Tomlinson B (2003) Association of two apolipoprotein A-I gene MspI polymorphisms with high density lipoprotein (HDL)-cholesterol levels and indices of obesity in selected healthy Chinese subjects and in patients with early-onset type 2 diabetes. Clin Endocrinol (Oxf) 59:442–449CrossRefGoogle Scholar
  21. 21.
    Ramos LR, Toniolo J, Cendoroglo MS, Garcia JT, Najas MS, Perracini M, Paola CR, Santos FC, Bilton T, Ebel SJ, Macedo MB, Almada CM, Nasri F, Miranda RD, Goncalves M, Santos AL, Fraietta R, Vivacqua I, Alves ML, Tudisco ES (1998) Two-year follow-up study of elderly residents in S Paulo, Brazil: methodology and preliminary results. Rev Saude Publica 32:397–407PubMedCrossRefGoogle Scholar
  22. 22.
    Whitworth JA (2003) 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21:1983–1992PubMedCrossRefGoogle Scholar
  23. 23.
    Jones DW, Hall JE (2004) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and evidence from new hypertension trials. Hypertension 43:1–3PubMedCrossRefGoogle Scholar
  24. 24.
    (1999) Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. The DECODE-study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of Diagnostic Criteria in Europe. Diabetologia 42:647-654Google Scholar
  25. 25.
    Kyle UG, Genton L, Hans D, Karsegard VL, Michel JP, Slosman DO, Pichard C (2001) Total body mass, fat mass, fat-free mass, and skeletal muscle in older people: cross-sectional differences in 60-year-old persons. J Am Geriatr Soc 49:1633–1640PubMedCrossRefGoogle Scholar
  26. 26.
    Rolland-Cachera MF, Cole TJ, Sempe M, Tichet J, Rossignol C, Charraud A (1991) Body Mass Index variations: centiles from birth to 87 years. Eur J Clin Nutr 45:13–21PubMedGoogle Scholar
  27. 27.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  28. 28.
    Bertolucci PH, Brucki SM, Campacci SR, Juliano Y (1994) The Mini-Mental State Examination in a general population: impact of educational status]. Arq Neuropsiquiatr 52:1–7PubMedGoogle Scholar
  29. 29.
    Bertolucci PH, Okamoto IH, Brucki SM, Siviero MO, Toniolo Neto J, Ramos LR (2001) Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arq Neuropsiquiatr 59:532–536PubMedGoogle Scholar
  30. 30.
    Blay SL, Ramos LR, Mari Jde J (1988) Validity of a Brazilian version of the Older Americans Resources and Services (OARS) mental health screening questionnaire. J Am Geriatr Soc 36:687–692PubMedGoogle Scholar
  31. 31.
    Bush TL, Miller SR, Golden AL, Hale WE (1989) Self-report and medical record report agreement of selected medical conditions in the elderly. Am J Public Health 79:1554–1556PubMedCrossRefGoogle Scholar
  32. 32.
    Miller O (2003) Bioquímica do Sangue—Substâncias não-eletrolíticas. In: Miller O (2003) O Laboratório e os métodos de imagem para o clínico 5th edn. Editora Atheneu, São PauloGoogle Scholar
  33. 33.
    Chen ES, Cendoroglo MS, Ramos LR, Araujo LM, Carvalheira GM, de Labio RW, Burbano RR, Payao SL, MdAC Smith (2006) APO A-V-1131T→C polymorphism frequency and its association with morbidity in a Brazilian elderly population. Clin Chem Lab Med 44:32–36PubMedCrossRefGoogle Scholar
  34. 34.
    Emery AEH (1986) Methodology in medical genetics—an introduction to statistical methods. Longman, EdinburghGoogle Scholar
  35. 35.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929PubMedCrossRefGoogle Scholar
  36. 36.
    Kamboh MI, Bunker CH, Aston CE, Nestlerode CS, McAllister AE, Ukoli FA (1999) Genetic association of five apolipoprotein polymorphisms with serum lipoprotein-lipid levels in African blacks. Genet Epidemiol 16:205–222PubMedCrossRefGoogle Scholar
  37. 37.
    Bai H, Saku K, Liu R, Jimi S, Arakawa K (1996) Analysis of a new polymorphism in the human apolipoprotein A-I gene: association with serum lipoprotein levels and coronary heart disease. J Cardiol 28:207–212PubMedGoogle Scholar
  38. 38.
    Jeenah M, Kessling A, Miller N, Humphries S (1990) G to A substitution in the promoter region of the apolipoprotein AI gene is associated with elevated serum apolipoprotein AI and high density lipoprotein cholesterol concentrations. Mol Biol Med 7:233–241PubMedGoogle Scholar
  39. 39.
    Sigurdsson G Jr, Gudnason V, Sigurdsson G, Humphries SE (1992) Interaction between a polymorphism of the apo A-I promoter region and smoking determines plasma levels of HDL and apo A-I. Arterioscler Thromb 12:1017–1022PubMedGoogle Scholar
  40. 40.
    Minnich A, DeLangavant G, Lavigne J, Roederer G, Lussier-Cacan S, Davignon J (1995) G→A substitution at position −75 of the apolipoprotein A-I gene promoter. Evidence against a direct effect on HDL cholesterol levels. Arterioscler Thromb Vasc Biol 15:1740–1745PubMedGoogle Scholar
  41. 41.
    de Franca E, Alves JG, Hutz MH (2005) APOA1/C3/A4 gene cluster variability and lipid levels in Brazilian children. Braz J Med Biol Res 38:535–541PubMedCrossRefGoogle Scholar
  42. 42.
    Wu JH, Kao JT, Wen MS, Lo SK (2000) DNA polymorphisms at the apolipoprotein A1-CIII loci in Taiwanese: correlation of plasma APOCIII with triglyceride level and body mass index. J Formos Med Assoc 99:367–374PubMedGoogle Scholar
  43. 43.
    Reguero JR, Cubero GI, Batalla A, Alvarez V, Hevia S, Cortina A, Coto E (1998) Apolipoprotein A1 gene polymorphisms and risk of early coronary disease. Cardiology 90:231–235PubMedCrossRefGoogle Scholar
  44. 44.
    Lahoz C, Pena R, Mostaza JM, Jimenez J, Subirats E, Pinto X, Taboada M, Lopez-Pastor A (2003) Apo A-I promoter polymorphism influences basal HDL-cholesterol and its response to pravastatin therapy. Atherosclerosis 168:289–295PubMedCrossRefGoogle Scholar
  45. 45.
    Al-Yahyaee SA, Al-Kindi MN, Al-Bahrani AI (2004) Apolipoprotein A1 gene polymorphisms at the −75 bp and +83/84 bp polymorphic sites in healthy Omanis compared with world populations. Hum Biol 76:307–312PubMedCrossRefGoogle Scholar
  46. 46.
    Heng CK, Low PS, Saha N (2001) Variations in the promoter region of the apolipoprotein A-1 gene influence plasma lipoprotein(a) levels in Asian Indian neonates from Singapore. Pediatr Res 49:514–518PubMedCrossRefGoogle Scholar
  47. 47.
    Ma YQ, Thomas GN, Tomlinson B (2005) Association of two apolipoprotein A-I gene MspI polymorphisms with lipid and blood pressure levels. Int J Cardiol 102:309–314PubMedCrossRefGoogle Scholar
  48. 48.
    Carnicer R, Navarro MA, Arbones-Mainar JM, Arnal C, Surra JC, Acin S, Sarria A, Blanco-Vaca F, Maeda N, Osada J (2007) Genetically based hypertension generated through interaction of mild hypoalphalipoproteinemia and mild hyperhomocysteinemia. J Hypertens 25:1597–1607PubMedCrossRefGoogle Scholar
  49. 49.
    Sathiyapriya V, Selvaraj N, Nandeesha H, Bobby Z, Agrawal A, Pavithran P (2007) Enhanced glycation of hemoglobin and plasma proteins is associated with increased lipid peroxide levels in non-diabetic hypertensive subjects. Arch Med Res 38:822–826PubMedCrossRefGoogle Scholar
  50. 50.
    Barzilai N, Shuldiner AR (2001) Searching for human longevity genes: the future history of gerontology in the post-genomic era. J Gerontol A Biol Sci Med Sci 56:M83–M87PubMedGoogle Scholar
  51. 51.
    Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252PubMedCrossRefGoogle Scholar
  52. 52.
    Jain SK, Palmer M (1997) The effect of oxygen radicals metabolites and vitamin E on glycosylation of proteins. Free Radic Biol Med 22:593–596PubMedCrossRefGoogle Scholar
  53. 53.
    Selvaraj N, Bobby Z, Sathiyapriya V (2006) Effect of lipid peroxides and antioxidants on glycation of hemoglobin: an in vitro study on human erythrocytes. Clin Chim Acta 366:190–195PubMedCrossRefGoogle Scholar
  54. 54.
    McCarthy WJ, Yancey AK, Siegel JM, Wong WK, Ward A, Leslie J, Gonzalez E (2008) Correlation of obesity with elevated blood pressure among racial/ethnic minority children in two Los Angeles middle schools. Prev Chronic Dis 5:A46PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elizabeth Suchi Chen
    • 1
  • Diego Robles Mazzotti
    • 1
  • Tatiane Katsue Furuya
    • 1
  • Maysa Seabra Cendoroglo
    • 2
  • Luiz Roberto Ramos
    • 2
  • Lara Quirino Araujo
    • 2
  • Rommel Rodriguez Burbano
    • 1
  • Marília de Arruda Cardoso Smith
    • 1
    Email author
  1. 1.Disciplina de Genética, Departamento de Morfologia e GenéticaEscola Paulista de Medicina/Universidade Federal de São PauloSão PauloBrazil
  2. 2.Geriatrics Division, Department of MedicineUNIFESPSão PauloBrazil

Personalised recommendations