Advertisement

Clinical and Experimental Medicine

, Volume 9, Issue 2, pp 81–92 | Cite as

Immunomodulation in the treatment of haematological malignancies

  • Michela Cesco-GaspereEmail author
  • Emma Morris
  • Hans J. Stauss
Review Article

Abstract

Despite the continuous advances in immunology and cancer biology, haematological malignancies are often incurable. Conventional chemotherapy and radiation are efficacious for some lymphoma and leukaemia, however relapse and progressive disease often occurs. The evidence that the immune system can play an essential role in controlling cancer progression provide a basis for the development of active therapies, such as immunization, aimed to evoke or amplify a tumour-specific immune response. However, the inability of the patient’s own immune system to mount effective responses against tumour antigens is a major limit of vaccination approaches. The adoptive transfer of effectors of the adaptive immune system is an attractive strategy to circumvent the limitations of autologous immune responses. Donor lymphocyte infusion and the transfer of monoclonal antibodies (MoAbs) have been the first forms of adoptive therapy approved for clinical use and are still fundamental components of immunotherapy of haematological malignancies. Due to the continuous characterization of tumour-specific antigen, the development of tumour-tailored therapies that exploit the specificity of antibodies and T cell receptors (TCRs) is progressing rapidly. This review highlights the current advances in the field of adoptive immunotherapy of haematological malignancies, starting by elucidating the ongoing progress in passive transfer of MoAbs. We will also discuss recent advances in the adoptive transfer with tumour-specific high avidity T cells, which can be generated ex vivo by the transfer of gene constructs encoding single chain antibodies or TCRs, thus redirecting T cell specificity to selected tumour antigens. The ability to produce gene-modified T cells of desired specificity and defined functional activity may improve in the future T cell based immunotherapy of cancer.

Keywords

Adoptive therapy Monoclonal antibodies Leukaemia T-cell receptor 

Notes

Acknowledgments

M. Cesco-Gaspere is supported by Leukaemia Research Funding.

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

  1. 1.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111PubMedCrossRefGoogle Scholar
  2. 2.
    Timmerman JM (2002) Vaccine therapies for non-Hodgkin’s lymphoma. Curr Treat Options Oncol 3:307–315PubMedCrossRefGoogle Scholar
  3. 3.
    Inoges S, Rodriguez-Calvillo M, Zabalegui N, de Lopez-Diaz CA, Villanueva H, Soria E, Suarez L, Rodriguez-Caballero A, Pastor F, Garcia-Munoz R, Panizo C, Perez-Calvo J, Melero I, Rocha E, Orfao A, Bendandi M (2006) Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst 98:1292–1301PubMedCrossRefGoogle Scholar
  4. 4.
    Greiner J, Dohner H, Schmitt M (2006) Cancer vaccines for patients with acute myeloid leukemia—definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 91:1653–1661PubMedGoogle Scholar
  5. 5.
    Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A, Amabile M, Forconi F, Gozzetti A, Raspadori D, Amadori S, Lauria F (2005) Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365:657–662PubMedGoogle Scholar
  6. 6.
    Cathcart K, Pinilla-Ibarz J, Korontsvit T, Schwartz J, Zakhaleva V, Papadopoulos EB, Scheinberg DA (2004) A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103:1037–1042PubMedCrossRefGoogle Scholar
  7. 7.
    Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787PubMedGoogle Scholar
  8. 8.
    Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J, Jafarpour B, Boss C, Barrett AJ (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242PubMedCrossRefGoogle Scholar
  9. 9.
    Ehrlich P (1957) The collected papers of Paul Ehrlich, vol 2. Pergamon Press, London, pp 550–557Google Scholar
  10. 10.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor PC, Williams RO, Maini RN (2001) Immunotherapy for rheumatoid arthritis. Curr Opin Immunol 13:611–616PubMedCrossRefGoogle Scholar
  12. 12.
    Zafir-Lavie I, Michaeli Y, Reiter Y (2007) Novel antibodies as anticancer agents. Oncogene 26:3714–3733PubMedCrossRefGoogle Scholar
  13. 13.
    Levy R, Miller RA (1990) Therapy of lymphoma directed at idiotypes. J Natl Cancer Inst Monogr 61–68Google Scholar
  14. 14.
    Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522PubMedGoogle Scholar
  15. 15.
    Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466PubMedGoogle Scholar
  16. 16.
    Stashenko P, Nadler LM, Hardy R, Schlossman SF (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125:1678–1685PubMedGoogle Scholar
  17. 17.
    Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM (1984) Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 63:1424–1433PubMedGoogle Scholar
  18. 18.
    Leget GA, Czuczman MS (1998) Use of rituximab, the new FDA-approved antibody. Curr Opin Oncol 10:548–551PubMedCrossRefGoogle Scholar
  19. 19.
    Davis TA, White CA, Grillo-Lopez AJ, Velasquez WS, Link B, Maloney DG, Dillman RO, Williams ME, Mohrbacher A, Weaver R, Dowden S, Levy R (1999) Single-agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma: results of a phase II trial of rituximab. J Clin Oncol 17:1851–1857PubMedGoogle Scholar
  20. 20.
    Piro LD, White CA, Grillo-Lopez AJ, Janakiraman N, Saven A, Beck TM, Varns C, Shuey S, Czuczman M, Lynch JW, Kolitz JE, Jain V (1999) Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 10:655–661PubMedCrossRefGoogle Scholar
  21. 21.
    Czuczman MS, Grillo-Lopez AJ, White CA, Saleh M, Gordon L, LoBuglio AF, Jonas C, Klippenstein D, Dallaire B, Varns C (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 17:268–276PubMedGoogle Scholar
  22. 22.
    McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833PubMedGoogle Scholar
  23. 23.
    Witzig TE, White CA, Wiseman GA, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Parker E, Grillo-Lopez AJ (1999) Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol 17:3793–3803PubMedGoogle Scholar
  24. 24.
    Lopez-Guillermo A, Mercadal S (2007) The clinical use of antibodies in haematological malignancies. Ann Oncol 18(Suppl 9):ix51–ix57PubMedCrossRefGoogle Scholar
  25. 25.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den NE, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:235–242PubMedCrossRefGoogle Scholar
  26. 26.
    Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, Reiser M, Metzner B, Harder H, Hegewisch-Becker S, Fischer T, Kropff M, Reis HE, Freund M, Wormann B, Fuchs R, Planker M, Schimke J, Eimermacher H, Trumper L, Aldaoud A, Parwaresch R, Unterhalt M (2005) Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 106:3725–3732PubMedCrossRefGoogle Scholar
  27. 27.
    Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, Solal-Celigny P, Offner F, Walewski J, Raposo J, Jack A, Smith P (2005) CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 105:1417–1423PubMedCrossRefGoogle Scholar
  28. 28.
    Bello C, Sotomayor EM (2007) Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. Hematology Am Soc Hematol Educ Program 2007:233–242Google Scholar
  29. 29.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446PubMedCrossRefGoogle Scholar
  30. 30.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758PubMedCrossRefGoogle Scholar
  31. 31.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947PubMedCrossRefGoogle Scholar
  32. 32.
    Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010PubMedCrossRefGoogle Scholar
  33. 33.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473PubMedCrossRefGoogle Scholar
  34. 34.
    Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Johnson S, Bonvini E, Koenig S (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67:8882–8890PubMedCrossRefGoogle Scholar
  35. 35.
    Teeling JL, French RR, Cragg MS, van den BJ, Pluyter M, Huang H, Chan C, Parren PW, Hack CE, Dechant M, Valerius T, van de Winkel JG, Glennie MJ (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104:1793–1800Google Scholar
  36. 36.
    Hagenbeek A, Gadeberg O, Johnson P, Pedersen LM, Walewski J, Hellmann A, Link BK, Robak T, Wojtukiewicz M, Pfreundschuh M, Kneba M, Engert A, Sonneveld P, Flensburg M, Petersen J, Losic N, Radford J (2008) First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 111:5486–5495PubMedCrossRefGoogle Scholar
  37. 37.
    Coiffier B, Lepretre S, Pedersen LM, Gadeberg O, Fredriksen H, van Oers MH, Wooldridge J, Kloczko J, Holowiecki J, Hellmann A, Walewski J, Flensburg M, Petersen J, Robak T (2008) Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood 111:1094–1100PubMedCrossRefGoogle Scholar
  38. 38.
    Clinical Trials Database from the US National Institutes of Health. http://www.clinicaltrials.gov
  39. 39.
    Grillo-Lopez AJ (2002) AntiCD20 mAbs: modifying therapeutic strategies and outcomes in the treatment of lymphoma patients. Expert Rev Anticancer Ther 2:323–329PubMedCrossRefGoogle Scholar
  40. 40.
    Linenberger ML (2005) CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19:176–182PubMedCrossRefGoogle Scholar
  41. 41.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMedGoogle Scholar
  42. 42.
    Boyd K, Dearden CE (2008) Alemtuzumab in the treatment of chronic lymphocytic lymphoma. Expert Rev Anticancer Ther 8:525–533PubMedCrossRefGoogle Scholar
  43. 43.
    Demko S, Summers J, Keegan P, Pazdur R (2008) FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia. Oncologist 13:167–174PubMedCrossRefGoogle Scholar
  44. 44.
    Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Cesano A, Goldenberg DM (2003) Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol 21:3051–3059PubMedCrossRefGoogle Scholar
  45. 45.
    Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Fields SZ, Cesano A, Goldenberg DM (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res 10:5327–5334PubMedCrossRefGoogle Scholar
  46. 46.
    Byrd JC, O’Brien S, Flinn IW, Kipps TJ, Weiss M, Rai K, Lin TS, Woodworth J, Wynne D, Reid J, Molina A, Leigh B, Harris S (2007) Phase 1 study of lumiliximab with detailed pharmacokinetic and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 13:4448–4455PubMedCrossRefGoogle Scholar
  47. 47.
    Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, Miller TP, Moore JO, Leonard JP, Gordon LI, Sweetenham J, Alkuzweny B, Finucane DM, Leigh BR (2005) Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol 23:4390–4398PubMedCrossRefGoogle Scholar
  48. 48.
    Robak T (2008) Novel monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Curr Cancer Drug Targets 8:156–171PubMedCrossRefGoogle Scholar
  49. 49.
    Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18:206–213PubMedCrossRefGoogle Scholar
  50. 50.
    Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI (1999) In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci USA 96:11476–11481PubMedCrossRefGoogle Scholar
  51. 51.
    Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 60:2444–2448PubMedGoogle Scholar
  52. 52.
    Gregor PD, Wolchok JD, Ferrone CR, Buchinshky H, Guevara-Patino JA, Perales MA, Mortazavi F, Bacich D, Heston W, Latouche JB, Sadelain M, Allison JP, Scher HI, Houghton AN (2004) CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 22:1700–1708PubMedCrossRefGoogle Scholar
  53. 53.
    Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717PubMedCrossRefGoogle Scholar
  54. 54.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377PubMedCrossRefGoogle Scholar
  55. 55.
    Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Restifo NP, Haworth LR, Levy C, Mavroukakis SA, Nichol G, Yellin MJ, Rosenberg SA (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053PubMedCrossRefGoogle Scholar
  56. 56.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  57. 57.
    Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:670–684PubMedCrossRefGoogle Scholar
  58. 58.
    Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151PubMedCrossRefGoogle Scholar
  59. 59.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034PubMedCrossRefGoogle Scholar
  60. 60.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800PubMedGoogle Scholar
  61. 61.
    Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K, Tsushima F, Otsuki N, Yagita H, Azuma M, Nakajima Y (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953PubMedCrossRefGoogle Scholar
  62. 62.
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365PubMedCrossRefGoogle Scholar
  63. 63.
    Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L (2005) Blockade of B7–H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096PubMedGoogle Scholar
  64. 64.
    Betts GJ, Clarke SL, Richards HE, Godkin AJ, Gallimore AM (2006) Regulating the immune response to tumours. Adv Drug Deliv Rev 58:948–961PubMedCrossRefGoogle Scholar
  65. 65.
    Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13:108–116PubMedCrossRefGoogle Scholar
  66. 66.
    Colombo MP, Piconese S (2007) Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7:880–887PubMedCrossRefGoogle Scholar
  67. 67.
    Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851PubMedCrossRefGoogle Scholar
  68. 68.
    Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K, Taniguchi M, Sugamura K, Nukiwa T, Kikuchi T (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117:3330–3338PubMedCrossRefGoogle Scholar
  69. 69.
    Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855PubMedCrossRefGoogle Scholar
  70. 70.
    Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525PubMedCrossRefGoogle Scholar
  71. 71.
    Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116PubMedCrossRefGoogle Scholar
  72. 72.
    Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, Abderrahim H, Noguchi M, Smith DH, Zeng Y (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21PubMedCrossRefGoogle Scholar
  73. 73.
    Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459PubMedCrossRefGoogle Scholar
  74. 74.
    Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10PubMedCrossRefGoogle Scholar
  75. 75.
    Knight DM, Wagner C, Jordan R, McAleer MF, DeRita R, Fass DN, Coller BS, Weisman HF, Ghrayeb J (1995) The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions. Mol Immunol 32:1271–1281PubMedCrossRefGoogle Scholar
  76. 76.
    Zittoun RA, Mandelli F, Willemze R, de WT, Labar B, Resegotti L, Leoni F, Damasio E, Visani G, Papa G (1995) Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) Leukemia Cooperative Groups. N Engl J Med 332:217–223Google Scholar
  77. 77.
    Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241PubMedCrossRefGoogle Scholar
  78. 78.
    Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedCrossRefGoogle Scholar
  79. 79.
    Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, Brenner MK, Rooney CM (1996) Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551–555PubMedCrossRefGoogle Scholar
  80. 80.
    Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555PubMedGoogle Scholar
  81. 81.
    Parmiani G, Castelli C, Santinami M, Rivoltini L (2007) Melanoma immunology: past, present and future. Curr Opin Oncol 19:121–127PubMedCrossRefGoogle Scholar
  82. 82.
    Marincola FM, Rivoltini L, Salgaller ML, Player M, Rosenberg SA (1996) Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells. J Immunother Emphasis Tumor Immunol 19:266–277PubMedGoogle Scholar
  83. 83.
    Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, Leitman SF, Rosenberg SA (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373PubMedCrossRefGoogle Scholar
  84. 84.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854PubMedCrossRefGoogle Scholar
  85. 85.
    Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R, Lurvink E, van der HM, Kluck P, Landegent JE, Kluin-Nelemans HC, Fibbe WE, Willemze R (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94:1201–1208Google Scholar
  86. 86.
    Marijt E, Wafelman A, van der HM, van BC, Bongaerts R, van Luxemburg-Heijs S, van den MJ, Wolbers JO, van der WN, Willemze R, Falkenburg F (2007) Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica 92:72–80Google Scholar
  87. 87.
    Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626PubMedCrossRefGoogle Scholar
  88. 88.
    Eshhar Z (2008) The T-body approach: redirecting T cells with antibody specificity. Handb Exp Pharmacol 181:329–342PubMedCrossRefGoogle Scholar
  89. 89.
    Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M (1999) Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1:123–127PubMedCrossRefGoogle Scholar
  90. 90.
    Rossig C, Brenner MK (2004) Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther 10:5–18PubMedCrossRefGoogle Scholar
  91. 91.
    Dembic Z, Haas W, Weiss S, McCubrey J, Kiefer H, von BH, Steinmetz M (1986) Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 320:232–238Google Scholar
  92. 92.
    Kessels HW, Wolkers MC, van den Boom MD, van den Valk MA, Schumacher TN (2001) Immunotherapy through TCR gene transfer. Nat Immunol 2:957–961PubMedCrossRefGoogle Scholar
  93. 93.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129PubMedCrossRefGoogle Scholar
  94. 94.
    Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, Apperley J, Engels B, Uckert W, Morris E, Stauss H (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067PubMedCrossRefGoogle Scholar
  95. 95.
    Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E, Willemze R, Falkenburg JH (2003) Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 102:3530–3540PubMedCrossRefGoogle Scholar
  96. 96.
    Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG, Willemze R, Falkenburg JH (2007) Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 109:235–243PubMedCrossRefGoogle Scholar
  97. 97.
    Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338PubMedCrossRefGoogle Scholar
  98. 98.
    Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67:3898–3903PubMedCrossRefGoogle Scholar
  99. 99.
    Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886PubMedCrossRefGoogle Scholar
  100. 100.
    Willemsen RA, Weijtens ME, Ronteltap C, Eshhar Z, Gratama JW, Chames P, Bolhuis RL (2000) Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther 7:1369–1377PubMedCrossRefGoogle Scholar
  101. 101.
    Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119:135–145PubMedCrossRefGoogle Scholar
  102. 102.
    Holst J, Vignali KM, Burton AR, Vignali DA (2006) Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat Methods 3:191–197PubMedCrossRefGoogle Scholar
  103. 103.
    Leisegang M, Engels B, Meyerhuber P, Kieback E, Sommermeyer D, Xue SA, Reuss S, Stauss H, Uckert W (2008) Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med 86:573–583PubMedCrossRefGoogle Scholar
  104. 104.
    Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R, Intan RS, Guillaume P, Romero P, Huber C, Theobald M (2008) Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 180:391–401PubMedGoogle Scholar
  105. 105.
    Yang L, Baltimore D (2005) Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci USA 102:4518–4523PubMedCrossRefGoogle Scholar
  106. 106.
    Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C, Bordignon C (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276:1719–1724PubMedCrossRefGoogle Scholar
  107. 107.
    Ciceri F, Bonini C, Marktel S, Zappone E, Servida P, Bernardi M, Pescarollo A, Bondanza A, Peccatori J, Rossini S, Magnani Z, Salomoni M, Benati C, Ponzoni M, Callegaro L, Corradini P, Bregni M, Traversari C, Bordignon C (2007) Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 109:4698–4707PubMedCrossRefGoogle Scholar
  108. 108.
    Thomis DC, Marktel S, Bonini C, Traversari C, Gilman M, Bordignon C, Clackson T (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257PubMedCrossRefGoogle Scholar
  109. 109.
    Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–4254PubMedCrossRefGoogle Scholar
  110. 110.
    Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michela Cesco-Gaspere
    • 1
    Email author
  • Emma Morris
    • 1
  • Hans J. Stauss
    • 1
  1. 1.Department of Immunology and Molecular PathologyUniversity College Medical SchoolLondonUK

Personalised recommendations