Clinical and Experimental Medicine

, Volume 8, Issue 3, pp 141–145 | Cite as

Serum levels of angiogenic cytokines decrease after radiotherapy in non-Hodgkin lymphomas

  • Roberto RiaEmail author
  • Teresa Cirulli
  • Teresa Giannini
  • Santa Bambace
  • Gabriella Serio
  • Maurizio Portaluri
  • Domenico Ribatti
  • Angelo Vacca
  • Franco Dammacco
Original Article



Serum levels of angiogenic cytokines decrease after radiotherapy in patients with cancer, and this may be relevant for treatment response and progression-free survival. Herein, we set out to determine whether circulating fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and platelet-derived growth factor-β (PDGF-β) decrease after radiotherapy in patients with non-Hodgkin lymphomas (NHLs) and if so, whether their decrease correlates with age, tumour histotype and stage, and radiation dose.

Material and methods

The serum levels of FGF-2, VEGF, HGF and PDGF-β were evaluated before and after radiotherapy by an enzyme-linked immunosorbent assay (ELISA). These levels were correlated both reciprocally and with age, histotype, stage and radiation dose.


After radiotherapy, FGF-2, VEGF and PDGF-β, but not HGF, significantly decreased in relation to the radiation dose and response. No correlation was established between cytokine levels, except for VEGF and PDGF-β, which decreased in parallel. Haemoglobin levels did not decrease after radiotherapy, while FGF-2, VEGF, HGF and PDGF-β levels did not correlate with age, NHL stage and histotype.


Soluble FGF-2, VEGF and PDGF-β levels decline after radiotherapy in NHLs, and may have predictive significance for response to treatment and recurrence.


Angiogenesis Cytokines Non-Hodgkin lymphoma Prognosis Radiotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman J (2001) Angiogenesis-dependent diseases. Semin Oncol 28:536–542PubMedCrossRefGoogle Scholar
  2. 2.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395PubMedCrossRefGoogle Scholar
  3. 3.
    Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedCrossRefGoogle Scholar
  4. 4.
    Ribatti D, Vacca A, Nico B et al (2001) The role of mast cells in tumour angiogenesis. Br J Haematol 115:514–521PubMedCrossRefGoogle Scholar
  5. 5.
    Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5:83–88PubMedCrossRefGoogle Scholar
  6. 6.
    Singh S, Sadanandam A, Singh RK (2007) Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26:453–467PubMedCrossRefGoogle Scholar
  7. 7.
    Papetti H, Herman IM (2002) Mechanisms of normal and tumorderived angiogenesis. Am J Physiol Cell Physiol 282:C947–970PubMedGoogle Scholar
  8. 8.
    Poon RT, Fan ST, Wong J (2001) Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol 19:1207–1225PubMedGoogle Scholar
  9. 9.
    Molica S, Vacca A, Ribatti D et al (2002) Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia. Blood 100:3344–3351PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrara N, Alitalo K (1999) Clinical Applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364PubMedCrossRefGoogle Scholar
  11. 11.
    Bachtiary B, Selzer E, Knocke TH et al (2002) Serum VEGF levels in patients undergoing primary radiotherapy for cervical cancer: impact on progression-free survival. Cancer Lett 179:197–203PubMedCrossRefGoogle Scholar
  12. 12.
    Dietz A, Rudat V, Conradt C et al (2000) Prognostic relevance of serum levels of the angiogenic peptide bFGF in advanced carcinoma of the head and neck treated by primary radiochemotherapy. Head Neck 22:666–673PubMedCrossRefGoogle Scholar
  13. 13.
    Chala E, Manes C, Iliades H et al (2006) Insulin resistance, growth factors and cytokine levels in overweight women with breast cancer before and after chemotherapy. Hormones 5:137–146PubMedGoogle Scholar
  14. 14.
    Glenjen N, Mosevoll KA, Oystein B (2002) Serum levels of angiogenin, basic fibroblast growth factor and endostatin in patients receiving intensive chemotherapy for acute myelogenous leukemia. Int J Cancer 101:86–94PubMedCrossRefGoogle Scholar
  15. 15.
    Urba ska-Rys H, Wierzbowska A, Robak T (2003) Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw 14:40–51PubMedGoogle Scholar
  16. 16.
    Ria R, Portaluri M, Russo F et al (2004) Serum levels of angiogenic cytokines decrease after antineoplastic radiotherapy. Cancer Lett 216:103–107PubMedCrossRefGoogle Scholar
  17. 17.
    Barr MP, Bouchier-Hayes DJ, Harmey JJ (2008) Vascular endothelial growth factor is an autocrine survival factor for breast tumour cells under hypoxia. Int J Oncol 32:41–48PubMedGoogle Scholar
  18. 18.
    Shi W, Teschendorf C, Muzyczka N et al (2003) Gene therapy delivery of endostatin enhances the treatment efficacy of radiation. Radiother Oncol 66:1–9PubMedCrossRefGoogle Scholar
  19. 19.
    Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984PubMedCrossRefGoogle Scholar
  20. 20.
    Duda DG, Jain RK, Willett CG (2007) Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J Clin Oncol 25:4033–4042PubMedCrossRefGoogle Scholar
  21. 21.
    Giannopoulou E, Katsoris P, Hatziapostolou M et al (2001) Xrays modulate extracellular matrix in vivo. Int J Cancer 94:690–698PubMedCrossRefGoogle Scholar
  22. 22.
    Harada H, Kizaka-Kondoh S, Li G et al (2001) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26:7508–7516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Roberto Ria
    • 1
    Email author
  • Teresa Cirulli
    • 1
  • Teresa Giannini
    • 1
  • Santa Bambace
    • 2
  • Gabriella Serio
    • 3
  • Maurizio Portaluri
    • 2
  • Domenico Ribatti
    • 4
  • Angelo Vacca
    • 1
  • Franco Dammacco
    • 1
  1. 1.Department of Biomedical Sciences and Human Oncology, Section of Internal MedicineUniversity of Bari Medical SchoolBariItaly
  2. 2.Operative Unit of RadiotherapyDi Summa General HospitalBrindisiItaly
  3. 3.Department of Biomedical Sciences and Human Oncology, Section of Medical StatisticsUniversity of Bari Medical SchoolBariItaly
  4. 4.Department of Human AnatomyUniversity of Bari Medical SchoolBariItaly

Personalised recommendations