Computational modelling of fluid and solute transport in the brain

  • Adam D. Martinac
  • Lynne E. BilstonEmail author
Review Paper


The glymphatic system is proposed to be a unidirectional fluid and solute circulation pathway in the brain involving transport through perivascular spaces, brain interstitium and glial cells. Some aspects of the glymphatic hypothesis are controversial, particularly the outflow pathway, and little is known about the forces that govern such fluid transport at each stage. Computational and mathematical modelling approaches can be valuable for testing hypotheses and are a useful adjunct to experimental research in this field. This article presents an overview of computational modelling studies associated with glymphatic fluid transport in the brain, from fluid inflow, transparenchymal transport and outflow. A broad range of modelling approaches have been used to investigate fluid and solute transport from purely analytical models to hydraulic resistance networks and computational fluid dynamics models. Most of the modelling attention has focused on periarterial inflow and transport through the parenchyma. Collectively these studies suggest that arterial pulsation is unlikely to be the sole inflow driving force, and diffusion is most likely the dominant mode of transport in the parenchymal extracellular spaces. Models of efflux are limited and have not been able to shed light on the driving forces for fluid outflow from the central nervous system.


Simulation Brain waste clearance Glymphatic 



ADM is supported by an Australian Government Research Training Program Scholarship and a UNSW Prince of Wales Clinical School Scholarship. LEB is supported by an NHMRC senior research fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552. CrossRefGoogle Scholar
  2. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135(3):387–407. CrossRefGoogle Scholar
  3. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217(3):877–885. CrossRefGoogle Scholar
  4. Altevogt BM, Colten HR (2006) Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press, Washington DCGoogle Scholar
  5. Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao L et al (2013) Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol 126(3):353–364. CrossRefGoogle Scholar
  6. Asgari M, de Zelicourt D, Kurtcuoglu V (2015) How astrocyte networks may contribute to cerebral metabolite clearance. Sci Rep 5:15024. CrossRefGoogle Scholar
  7. Asgari M, de Zelicourt D, Kurtcuoglu V (2016) Glymphatic solute transport does not require bulk flow. Sci Rep 6:38635. CrossRefGoogle Scholar
  8. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999. CrossRefGoogle Scholar
  9. Bacyinski A, Xu M, Wang W, Hu J (2017) The paravascular pathway for brain waste clearance: current understanding. Significance and controversy. Front Neuroanat 11:101. CrossRefGoogle Scholar
  10. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW et al (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36(2):181–194. CrossRefGoogle Scholar
  11. Bakker E, Naessens DMP, VanBavel E (2018) Paravascular spaces: entry to or exit from the brain? Exp Physiol. CrossRefGoogle Scholar
  12. Basser PJ (1992) Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc Res 44(2):143–165CrossRefGoogle Scholar
  13. Bazigou E, Makinen T (2013) Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci 70(6):1055–1066. CrossRefGoogle Scholar
  14. Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker EN (2018) Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab 38(4):719–726. CrossRefGoogle Scholar
  15. Benveniste H, Lee H, Ding F, Sun Q, Al-Bizri E, Makaryus R et al (2017) Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 127(6):976–988. CrossRefGoogle Scholar
  16. Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND (2019) Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg 128(4):747–758. CrossRefGoogle Scholar
  17. Bilston LE, Fletcher DF, Brodbelt AR, Stoodley MA (2003) Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin 6(4):235–241. CrossRefGoogle Scholar
  18. Bilston LE, Stoodley MA, Fletcher DF (2010) The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J Neurosurg 112(4):808–813. CrossRefGoogle Scholar
  19. Bradbury MW, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519–534CrossRefGoogle Scholar
  20. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240(4):F329–F336. CrossRefGoogle Scholar
  21. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. CrossRefGoogle Scholar
  22. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144. CrossRefGoogle Scholar
  23. Chen WW, Zhang X, Huang WJ (2016) Role of physical exercise in Alzheimer’s disease. Biomed Rep 4(4):403–407. CrossRefGoogle Scholar
  24. Cherian I, Beltran M, Kasper EM, Bhattarai B, Munokami S, Grasso G (2016) Exploring the Virchow-Robin spaces function: a unified theory of brain diseases. Surg Neurol Int 7(Suppl 26):S711–S714. CrossRefGoogle Scholar
  25. Cipolla MJ (2009) The Cerebral Circulation San Rafael (CA).
  26. Coloma M, Schaffer JD, Carare RO, Chiarot PR, Huang P (2016) Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J Math Biol 73(2):469–490. MathSciNetCrossRefzbMATHGoogle Scholar
  27. Cserr H, Patlak C (1992) Secretion and bulk flow of interstitial fluid. In: Bradbury MWB (ed) Physiology and pharmacology of the blood-brain barrier. Handbook of experimental pharmacology, vol 103. Springer, Berlin, pp 245–261CrossRefGoogle Scholar
  28. Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240(4):F319–F328. CrossRefGoogle Scholar
  29. Diem AK, Tan M, Bressloff NW, Hawkes C, Morris AW, Weller RO et al (2016) A simulation model of periarterial clearance of amyloid-beta from the brain. Front Aging Neurosci 8:18. CrossRefGoogle Scholar
  30. Diem AK, MacGregor Sharp M, Gatherer M, Bressloff NW, Carare RO, Richardson G (2017) Arterial pulsations cannot drive intramural periarterial drainage: significance for abeta drainage. Front Neurosci 11:475. CrossRefGoogle Scholar
  31. Eide PK, Saehle T (2010) Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Acta Neurochir (Wien) 152(6):989–995. CrossRefGoogle Scholar
  32. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G (2018) Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep 8(1):7194. CrossRefGoogle Scholar
  33. Faghih MM, Sharp MK (2018) Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS 15(1):17. CrossRefGoogle Scholar
  34. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C et al (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1):69–78. CrossRefGoogle Scholar
  35. Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA et al (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121(4):431–443. CrossRefGoogle Scholar
  36. Heppell C, Richardson G, Roose T (2013) A model for fluid drainage by the lymphatic system. Bull Math Biol 75(1):49–81. MathSciNetCrossRefzbMATHGoogle Scholar
  37. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26. CrossRefGoogle Scholar
  38. Hladky SB, Barrand MA (2017) Metabolite clearance during wakefulness and sleep. Handb Exp Pharmacol. CrossRefGoogle Scholar
  39. Hladky SB, Barrand MA (2018) Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 15(1):30. CrossRefGoogle Scholar
  40. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW et al (2017) Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci USA 114(37):9894–9899. CrossRefGoogle Scholar
  41. Hughes TM, Sink KM (2016) Hypertension and its role in cognitive function: current evidence and challenges for the future. Am J Hypertens 29(2):149–157. CrossRefGoogle Scholar
  42. Hughes TM, Kuller LH, Barinas-Mitchell EJ, Mackey RH, McDade EM, Klunk WE et al (2013) Pulse wave velocity is associated with β-amyloid deposition in the brains of very elderly adults. Neurology 81(19):1711–1718CrossRefGoogle Scholar
  43. Hughes TM, Kuller LH, Barinas-Mitchell EJ, McDade EM, Klunk WE, Cohen AD et al (2014) Arterial stiffness and beta-amyloid progression in nondemented elderly adults. JAMA Neurol 71(5):562–568. CrossRefGoogle Scholar
  44. Hunter P (2015) Simulating the human brain: scientists have started various major projects to simulate and understand the brain, but many neuroscientists remain sceptical about their scope and aims. EMBO Rep 16(6):685–688. CrossRefGoogle Scholar
  45. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111. CrossRefGoogle Scholar
  46. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M et al (2013a) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309. CrossRefGoogle Scholar
  47. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y et al (2013b) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199. CrossRefGoogle Scholar
  48. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The Glymphatic system: a beginner’s guide. Neurochem Res 40(12):2583–2599. CrossRefGoogle Scholar
  49. Jin BJ, Smith AJ, Verkman AS (2016) Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol 148(6):489–501. CrossRefGoogle Scholar
  50. Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11(11):1579–1591. CrossRefGoogle Scholar
  51. Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z (2016) Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand 134(3):168–180. CrossRefGoogle Scholar
  52. Keable A, Fenna K, Yuen HM, Johnston DA, Smyth NR, Smith C et al (2016) Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta 1862(5):1037–1046. CrossRefGoogle Scholar
  53. Kiviniemi V, Wang X, Korhonen V, Keinanen T, Tuovinen T, Autio J et al (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36(6):1033–1045. CrossRefGoogle Scholar
  54. Kurtcuoglu V (2011) Computational fluid dynamics for the assessment of cerebrospinal fluid flow and its coupling with cerebral blood flow. In: Killer M (ed) Biomechanics of the Brain. Springer, Berlin, pp 169–188CrossRefGoogle Scholar
  55. Kurtcuoglu V, Soellinger M, Summers P, Boomsma K, Poulikakos D, Boesiger P et al (2007a) Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J Biomech 40(6):1235–1245. CrossRefGoogle Scholar
  56. Kurtcuoglu V, Soellinger M, Summers P, Poulikakos D, Boesiger P (2007b) Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J Biomech Eng 129(5):695–702. CrossRefGoogle Scholar
  57. Kyrtsos CR, Baras JS (2015) Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis. PLoS ONE 10(10):e0139574. CrossRefGoogle Scholar
  58. Lam MA, Hemley SJ, Najafi E, Vella NGF, Bilston LE, Stoodley MA (2017) The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci Rep 7(1):12924. CrossRefGoogle Scholar
  59. Lange-Asschenfeldt C, Kojda G (2008) Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Exp Gerontol 43(6):499–504. CrossRefGoogle Scholar
  60. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R et al (2015) The Effect of Body Posture on Brain Glymphatic Transport. J Neurosci 35(31):11034–11044. CrossRefGoogle Scholar
  61. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. CrossRefGoogle Scholar
  62. Liu DX, He X, Wu D, Zhang Q, Yang C, Liang FY et al (2017) Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci Lett 653:189–194. CrossRefGoogle Scholar
  63. Lloyd RA, Fletcher DF, Clarke EC, Bilston LE (2017) Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: a subject-specific computational modelling study. J Biomech 65:185–193. CrossRefGoogle Scholar
  64. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. CrossRefGoogle Scholar
  65. Louveau A, Da Mesquita S, Kipnis J (2016) Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron 91(5):957–973. CrossRefGoogle Scholar
  66. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127(9):3210–3219. CrossRefGoogle Scholar
  67. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E et al (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37(6):2112–2124. CrossRefGoogle Scholar
  68. Magdoom KN, Brown A, Rey J, Mareci TH, King MA, Sarntinoranont M (2019) MRI of whole rat brain perivascular network reveals role for ventricles in brain waste clearance. Sci Rep 9(1):11480. CrossRefGoogle Scholar
  69. Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM et al (2018) Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 9(1):4878. CrossRefGoogle Scholar
  70. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ (2002) Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond) 103(4):371–377. CrossRefGoogle Scholar
  71. Morris AW, Carare RO, Schreiber S, Hawkes CA (2014) The cerebrovascular basement membrane: role in the clearance of beta-amyloid and cerebral amyloid angiopathy. Front Aging Neurosci 6:251. CrossRefGoogle Scholar
  72. Nicholson C, Tao L (1993) Diffusion properties of brain tissue measured with electrode methods and prospects for optical analysis. Adv Exp Med Biol 333:213–223CrossRefGoogle Scholar
  73. Partyka PP, Godsey GA, Galie JR, Kosciuk MC, Acharya NK, Nagele RG et al (2017) Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier. Biomaterials 115:30–39. CrossRefGoogle Scholar
  74. Penn RD, Linninger A (2009) The physics of hydrocephalus. Pediatr Neurosurg 45(3):161–174. CrossRefGoogle Scholar
  75. Plog BA, Nedergaard M (2018) The Glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394. CrossRefGoogle Scholar
  76. Postnov D, Postnikov E, Karavaev A, Glushkovskaya-Semyachkina O (2018) On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis. In: Saratov fall meeting 2017: laser physics and photonics XVIII; and computational biophysics and analysis of biomedical data IV. International Society for Optics and Photonics, p. 107171 WGoogle Scholar
  77. Rakesh G, Szabo ST, Alexopoulos GS, Zannas AS (2017) Strategies for dementia prevention: latest evidence and implications. Ther Adv Chronic Dis 8(8–9):121–136. CrossRefGoogle Scholar
  78. Raper D, Louveau A, Kipnis J (2016) How do meningeal lymphatic vessels drain the CNS? Trends Neurosci 39(9):581–586. CrossRefGoogle Scholar
  79. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17(11):1016–1024. CrossRefGoogle Scholar
  80. Ray L, Iliff JJ, Heys JJ (2019) Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 16:6. CrossRefGoogle Scholar
  81. Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439Google Scholar
  82. Rey J, Sarntinoranont M (2018) Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids Barriers CNS 15(1):20. CrossRefGoogle Scholar
  83. Ringstad G, Vatnehol SAS, Eide PK (2017) Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140(10):2691–2705. CrossRefGoogle Scholar
  84. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SS, Emblem KE et al (2018) Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. CrossRefGoogle Scholar
  85. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238(4):962–974. CrossRefGoogle Scholar
  86. Shahim K, Drezet JM, Martin BA, Momjian S (2012) Ventricle equilibrium position in healthy and normal pressure hydrocephalus brains using an analytical model. J Biomech Eng 134(4):041007. CrossRefGoogle Scholar
  87. Sharp MK, Diem AK, Weller RO, Carare RO (2016) Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann Biomed Eng 44(5):1553–1565. CrossRefGoogle Scholar
  88. Shinkai Y, Yoshimura M, Ito Y, Odaka A, Suzuki N, Yanagisawa K et al (1995) Amyloid beta-proteins 1-40 and 1-42(43) in the soluble fraction of extra- and intracranial blood vessels. Ann Neurol 38(3):421–428. CrossRefGoogle Scholar
  89. Simon MJ, Iliff JJ (2016) Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 1862(3):442–451. CrossRefGoogle Scholar
  90. Smith JH, Humphrey JA (2007) Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. Microvasc Res 73(1):58–73. CrossRefGoogle Scholar
  91. Smith AJ, Verkman AS (2018) The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J 32(2):543–551. CrossRefGoogle Scholar
  92. Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS (2017) Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. CrossRefGoogle Scholar
  93. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340. CrossRefGoogle Scholar
  94. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470. CrossRefGoogle Scholar
  95. Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 37(10):3300–3317. CrossRefGoogle Scholar
  96. Trevaskis NL, Kaminskas LM, Porter CJ (2015) From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 14(11):781–803. CrossRefGoogle Scholar
  97. Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH (2018) Interaction between blood-brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev 90:26–33. CrossRefGoogle Scholar
  98. Verkman AS (2013) Diffusion in the extracellular space in brain and tumors. Phys Biol 10(4):045003. CrossRefGoogle Scholar
  99. Wang P, Olbricht WL (2011) Fluid mechanics in the perivascular space. J Theor Biol 274(1):52–57. MathSciNetCrossRefzbMATHGoogle Scholar
  100. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, Later W et al (2012) Evaluation of specific metabolic rates of major organs and tissues: comparison between nonobese and obese women. Obesity (Silver Spring) 20(1):95–100. CrossRefGoogle Scholar
  101. Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117(1):1–14. CrossRefGoogle Scholar
  102. Weller RO, Galea I, Carare RO, Minagar A (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17(4):295–306. CrossRefGoogle Scholar
  103. Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10(5):1492–1504. CrossRefGoogle Scholar
  104. Wszedybyl-Winklewska M, Wolf J, Swierblewska E, Kunicka K, Mazur K, Gruszecki M et al (2017) Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations. PLoS ONE 12(6):e0179503. CrossRefGoogle Scholar
  105. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377. CrossRefGoogle Scholar
  106. Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R et al (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107. CrossRefGoogle Scholar
  107. Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neuroscience Research Australia and Prince of Wales Clinical SchoolUNSWKensingtonAustralia

Personalised recommendations