Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis

  • Waqas Waheed
  • Anas Alazzam
  • Ashraf N. Al-Khateeb
  • Eiyad Abu-NadaEmail author
Original Paper


The dissipative particle dynamics (DPD) technique is employed to model the trajectories of micro-objects in a practical microfluidic device. The simulation approach is first developed using an in-house Fortran code to model Stokes flow at Reynolds number of 0.01. The extremely low Reynolds number is achieved by adjusting the DPD parameters, such as force coefficients, thermal energies of the particles, and time steps. After matching the numerical flow profile with the analytical results, the technique is developed further to simulate the deflection of micro-objects under the effect of a deflecting external force in a rectangular microchannel. A mapping algorithm is introduced to establish the scaling relationship for the deflecting force between the physical device and the DPD domain. Dielectrophoresis is studied as a case study for the deflecting force, and the trajectory of a single red blood cell under the influence of the dielectrophoretic force is simulated. The device is fabricated using standard microfabrication techniques, and the experiments involving a dilute sample of red blood cells are performed at two different cases of the actuation voltage. Good agreement between the numerical and experimental results is achieved.


Dissipative particle dynamics Microfluidics Dielectrophoresis Red blood cells 



This publication is based upon work supported by the Khalifa University of Science and Technology under Award No. [CIRA-2019-014]

Supplementary material

Supplementary material 1 (MP4 16747 kb)


  1. Abu-Nada E (2011) Energy conservative dissipative particle dynamics simulation of natural convection in liquids. J Heat Transf 133:112502CrossRefGoogle Scholar
  2. Agarwal T, Maiti TK (2019) Dielectrophoresis-based devices for cell patterning. In: Bioelectronics and medical devices. Elsevier, pp 493–511Google Scholar
  3. Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32:1327–1336CrossRefGoogle Scholar
  4. Alazzam A, Mathew B, Khashan S (2017a) Microfluidic platforms for bio-applications. In: Zhang D, Wei B (eds) Advanced mechatronics and MEMS devices II. Microsystems and Nanosystems, Springer, ChamGoogle Scholar
  5. Alazzam A, Mathew B, Alhammadi F (2017b) Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J Sep Sci 40:1193–1200CrossRefGoogle Scholar
  6. Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House, BostonGoogle Scholar
  7. Boek E, Coveney PV, Lekkerkerker H, van der Schoot P (1997) Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55:3124CrossRefGoogle Scholar
  8. Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364MathSciNetzbMATHCrossRefGoogle Scholar
  9. Chen S, Phan-Thien N, Khoo BC, Fan XJ (2006) Flow around spheres by dissipative particle dynamics. Phys Fluids 18:103605MathSciNetzbMATHCrossRefGoogle Scholar
  10. Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538CrossRefGoogle Scholar
  11. Destgeer G, Sung HJ (2015) Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15:2722–2738CrossRefGoogle Scholar
  12. Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13:4210–4216CrossRefGoogle Scholar
  13. Ermak DL, McCammon J (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360CrossRefGoogle Scholar
  14. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhys Lett) 30:191CrossRefGoogle Scholar
  15. Fan X, Phan-Thien N, Chen S, Wu X, Yong Ng T (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18:063102zbMATHCrossRefGoogle Scholar
  16. Gao C, Zhang P, Marom G, Deng Y, Bluestein D (2017) Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J Comput Phys 335:812–827MathSciNetCrossRefGoogle Scholar
  17. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435CrossRefGoogle Scholar
  18. Hartmann D (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9:1–17CrossRefGoogle Scholar
  19. Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19:155CrossRefGoogle Scholar
  20. Iliescu C, Xu G, Tong WH, Yu F, Bălan CM, Tresset G, Yu H (2015) Cell patterning using a dielectrophoretic–hydrodynamic trap. Microfluid Nanofluid 19:363–373CrossRefGoogle Scholar
  21. Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, Breitsprecher D (2014) Microscale thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113CrossRefGoogle Scholar
  22. Khashan SA, Dagher S, Alazzam A, Mathew B, Hilal-Alnaqbi A (2017) Microdevice for continuous flow magnetic separation for bioengineering applications. J Micromech Microeng 27:055016CrossRefGoogle Scholar
  23. Kleinstreuer C, Zhang Z, Li Z, Roberts WL, Rojas C (2008) A new methodology for targeting drug-aerosols in the human respiratory system. Int J Heat Mass Transf 51:5578–5589zbMATHCrossRefGoogle Scholar
  24. Kumar A, Asako Y, Abu-Nada E, Krafczyk M, Faghri M (2009) From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel. Microfluid Nanofluid 7:467CrossRefGoogle Scholar
  25. Kurita R, Hayashi K, Fan X, Yamamoto K, Kato T, Niwa O (2002) Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate. Sens Actuators B Chem 87:296–303CrossRefGoogle Scholar
  26. Leong FY, Li Q, Lim CT, Chiam K-H (2011) Modeling cell entry into a micro-channel. Biomech Model Mechanobiol 10:755–766CrossRefGoogle Scholar
  27. Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76MathSciNetzbMATHCrossRefGoogle Scholar
  28. Liu M, Liu G, Zhou L, Chang J (2015) Dissipative particle dynamics (dpd): an overview and recent developments. Arch Comput Methods Eng 22:529–556MathSciNetzbMATHCrossRefGoogle Scholar
  29. Mai-Duy N, Pan D, Phan-Thien N, Khoo B (2013) Dissipative particle dynamics modeling of low Reynolds number incompressible flows. J Rheol 57:585–604CrossRefGoogle Scholar
  30. Marsh C, Backx G, Ernst M (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev E 56:1676CrossRefGoogle Scholar
  31. Meakin P, Xu Z (2009) Dissipative particle dynamics and other particle methods for multiphase fluid flow in fractured and porous media. Progr Comput Fluid Dyn Int J 9:399–408CrossRefGoogle Scholar
  32. Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11:1574–1586CrossRefGoogle Scholar
  33. Nerguizian V, Stiharu I, Al-Azzam N, Yassine-Diab B, Alazzam A (2019) The effect of dielectrophoresis on living cells: crossover frequencies and deregulation in gene expression. Analyst 144:3853–3860. CrossRefGoogle Scholar
  34. Ng K, Sheu T (2017) Refined energy-conserving dissipative particle dynamics model with temperature-dependent properties and its application in solidification problem. Phys Rev E 96:043302CrossRefGoogle Scholar
  35. Phan-Thien N, Mai-Duy N, Khoo B (2014) A spring model for suspended particles in dissipative particle dynamics. J Rheol 58:839–867CrossRefGoogle Scholar
  36. Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207:114–128MathSciNetzbMATHCrossRefGoogle Scholar
  37. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871CrossRefGoogle Scholar
  38. Pol R, Céspedes F, Gabriel D, Baeza M (2017) Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends Anal Chem 95:62–68CrossRefGoogle Scholar
  39. Qian C, Huang H, Chen L, Li X, Ge Z, Chen T, Yang Z, Sun L (2014) Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 15:18281–18309CrossRefGoogle Scholar
  40. Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 121:309–311CrossRefGoogle Scholar
  41. Rothman DH, Zaleski S (2004) Lattice-gas cellular automata: simple models of complex hydrodynamics, vol 5. Cambridge University Press, CambridgezbMATHGoogle Scholar
  42. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181CrossRefGoogle Scholar
  43. Steiner T, Cupelli C, Zengerle R, Santer M (2009) Simulation of advanced microfluidic systems with dissipative particle dynamics. Microfluid Nanofluid 7:307–323CrossRefGoogle Scholar
  44. Waheed W, Alazzam A, Mathew B, Christoforou N, Abu-Nada E (2018a) Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. J Chromatogr B 1087:133–137CrossRefGoogle Scholar
  45. Waheed W, Alazzam A, Abu-Nada E, Khashan S, Abutayeh M (2018b) A microfluidics device for 3d switching of microparticles using dielectrophoresis. J Electrostat 94:1–7CrossRefGoogle Scholar
  46. Waheed W, Alazzam A, Mathew B, Abu-Nada E, Al-Khateeb AN (2018c) In: A scalabale microfluidic device for switching of microparticles using dielectrophoresis, ASME 2018 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp V010T013A014–V010T013A014Google Scholar
  47. Waheed W, Alazzam A, Al-Khateeb AN, Sung HJ, Abu-Nada E (2019) Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: low Reynolds number and high Schmidt scenarios. J Chem Phys 150:054901CrossRefGoogle Scholar
  48. Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP (2007) Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7:1114–1120CrossRefGoogle Scholar
  49. Willemsen S, Hoefsloot H, Iedema P (2000) No-slip boundary condition in dissipative particle dynamics. Int J Mod Phys C 11:881–890Google Scholar
  50. Wu L, Lanry Yung L-Y, Lim K-M (2012) Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6:014113CrossRefGoogle Scholar
  51. Xiao L, Liu Y, Chen S, Fu B (2016) Numerical simulation of a single cell passing through a narrow slit. Biomech Model Mechanobiol 15:1655–1667CrossRefGoogle Scholar
  52. Xiong W, Zhang J (2012) Two-dimensional lattice boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech Model Mechanobiol 11:575–583CrossRefGoogle Scholar
  53. Xu Z, Kleinstreuer C (2018) Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow. Med Biol Eng Comput 56(15):1–10Google Scholar
  54. Ye T, Phan-Thien N, Khoo BC, Lim CT (2014) Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow. Phys Fluids 26:111902CrossRefGoogle Scholar
  55. Ye T, Phan-Thien N, Lim CT (2016) Particle-based simulations of red blood cells—a review. J Biomech 49:2255–2266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Waqas Waheed
    • 1
  • Anas Alazzam
    • 1
  • Ashraf N. Al-Khateeb
    • 2
  • Eiyad Abu-Nada
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu DhabiUAE
  2. 2.Department of Aerospace EngineeringKhalifa University of Science and TechnologyAbu DhabiUAE

Personalised recommendations