Advertisement

On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon

  • Ivan GiorgioEmail author
  • Francesco dell’Isola
  • Ugo Andreaus
  • Faris Alzahrani
  • Tasawar Hayat
  • Tomasz Lekszycki
Original Paper
  • 9 Downloads

Abstract

In the past years, many attempts have been made in order to model the process of bone remodeling. This process is complex, as it is governed by not yet completely understood biomechanical coupled phenomena. It is well known that bone tissue is able to self-adapt to different environmental demands of both mechanical and biological origin. The mechanical aspects are related to the functional purpose of the bone tissue, i.e., to provide support to the body and protection for the vitally important organs in response to the external loads. The many biological aspects include the process of oxygen and nutrients supply. To describe the biomechanical process of functional adaptation of bone tissue, the approach commonly adopted is to consider it as a ‘feedback’ control regulated by the bone cells, namely osteoblasts and osteoclasts. They are responsible for bone synthesis and resorption, respectively, while osteocytes are in charge of ‘sensing’ the mechanical status of the tissue. Within this framework, in  Lekszycki and dell’Isola (ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444, 2012), a model based on a system of integro-differential equations was introduced aiming to predict the evolution of the process of remodeling in surgically reconstructed bones. The main idea in the aforementioned model was to introduce a scalar field, describing the biological stimulus regulating the interaction among all kinds of bone cells at a macroscale. This biological field was assumed to depend locally on certain deformation measures of the (reconstructed) bone tissue. However, biological knowledge suggests that this stimulus, after having been produced, ‘diffuses’ in bone tissue, so controlling in a complex way its remodeling. This means that the cells which are target of the stimulus may not be located in the same place occupied by the cells producing it. In this paper, we propose a model which intends to explain the diffusive nature of the biological stimulus to encompass the time-dependent and space–time displaced effects involved in bone reconstruction process. Preliminary numerical simulations performed in typical cases are presented. These numerical case studies suggest that the ‘diffusive’ model of stimulus is promising: we plan to continue these kinds of studies in further investigations.

Keywords

Mechanical–biological coupling Bone functional adaptation Growth/resorption processes Bone remodeling 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aarden EM, Nijweide PJ, Burger EH (1994) Function of osteocytes in bone. J Cell Biochem 55(3):287–299CrossRefGoogle Scholar
  2. Abali BE, Völlmecke C, Woodward B, Kashtalyan M, Guz I, Müller WH (2012) Numerical modeling of functionally graded materials using a variational formulation. Contin Mech Thermodyn 24(4–6):377–390MathSciNetzbMATHCrossRefGoogle Scholar
  3. Abeyaratne R, Knowles JK (2006) Evolution of phase transitions. A continuum theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner 12(2):101–112CrossRefGoogle Scholar
  5. Allena R, Cluzel C (2018) Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Math Mech Complex Syst 6(4):339–351MathSciNetCrossRefGoogle Scholar
  6. Altenbach H, Eremeyev V (2015) On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math Mech Complex Syst 3(3):273–283MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. Zeitschrift für angewandte Mathematik und Physik 61(1):177–191MathSciNetzbMATHCrossRefGoogle Scholar
  8. Andreaus U, Colloca M, Iacoviello D (2014a) Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput Methods Progr Biomed 113(1):80–91CrossRefGoogle Scholar
  9. Andreaus U, Giorgio I, Lekszycki T (2014b) A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 94(12):978–1000MathSciNetzbMATHCrossRefGoogle Scholar
  10. Arias CF, Herrero MA, Echeverri LF, Oleaga GE, Lopez JM (2018) Bone remodeling: a tissue-level process emerging from cell-level molecular algorithms. PLoS ONE 13(9):e0204171CrossRefGoogle Scholar
  11. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guid. Butterworth–Heinemann, BostonGoogle Scholar
  12. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445CrossRefGoogle Scholar
  13. Baiotto S, Zidi M (2004) Theoretical and numerical study of a bone remodeling model: the effect of osteocyte cells distribution. Biomech Model Mechanobiol 3(1):6–16zbMATHCrossRefGoogle Scholar
  14. Barkaoui A, Chamekh A, Merzouki T, Hambli R, Mkaddem A (2014) Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. Int J Numer Methods Biomed Eng 30(3):318–338MathSciNetCrossRefGoogle Scholar
  15. Barkaoui A, Tlili B, Vercher-Martínez A, Hambli R (2016) A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method. Comput Methods Progr Biomed 134:69–78CrossRefGoogle Scholar
  16. Beaupre GS, Orr TE, Carter DR (1990a) An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop Res 8(5):662–670CrossRefGoogle Scholar
  17. Beaupre GS, Orr TE, Carter DR (1990b) An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res 8(5):651–661CrossRefGoogle Scholar
  18. Bednarczyk E, Lekszycki T (2016) A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4):94MathSciNetzbMATHCrossRefGoogle Scholar
  19. Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical simulation of waves and fronts in inhomogeneous solids. World Scientific, NJzbMATHCrossRefGoogle Scholar
  20. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615CrossRefGoogle Scholar
  21. Bonucci E (2009) The osteocyte: the underestimated conductor of the bone orchestra. Rendiconti Lincei 20(3):237–254CrossRefGoogle Scholar
  22. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J 13(9001):S101–S112CrossRefGoogle Scholar
  23. Camar-Eddine M, Seppecher P (2001) Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Academie des Sciences Series I Mathematics 5(332):485–490MathSciNetzbMATHGoogle Scholar
  24. Carvalho MC, Carlen E, Esposito R, Lebowitz JL, Marra R (2009) Droplet minimizers for the gates-lebowitz-penrose free energy functional. Nonlinearity 22:2919–2952.  https://doi.org/10.1088/0951-7715/22/12/007 MathSciNetzbMATHCrossRefGoogle Scholar
  25. Cattaneo C (1958) On a form of heat equation which eliminates the paradox of instantaneous propagation. Comptes Rendus 247:431–433zbMATHGoogle Scholar
  26. Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math Mech Solids 19(2):193–211MathSciNetzbMATHCrossRefGoogle Scholar
  27. Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433(7023):317CrossRefGoogle Scholar
  28. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Supplement 3):S131–S139CrossRefGoogle Scholar
  29. Cluzel C, Allena R (2018) A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using \(\mu\)CT images. Math Mech Complex Syst 6(4):353–367MathSciNetCrossRefGoogle Scholar
  30. Colangeli M, De Masi A, Presutti E (2016) Latent heat and the fourier law. Phys Lett A 380(20):1710–1713CrossRefGoogle Scholar
  31. Colangeli M, De Masi A, Presutti E (2017) Microscopic models for uphill diffusion. J Phys A Math Theor 50(43):435002zbMATHCrossRefGoogle Scholar
  32. Contrafatto L, Cuomo M (2006) A framework of elastic–plastic damaging model for concrete under multiaxial stress states. Int J Plast 22(12):2272–2300zbMATHCrossRefGoogle Scholar
  33. Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238MathSciNetCrossRefGoogle Scholar
  34. Cowin SC (ed) (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  35. Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and tgf-\(\beta\) signaling in bone remodeling. J Clin Investig 124(2):466–472CrossRefGoogle Scholar
  36. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188MathSciNetzbMATHCrossRefGoogle Scholar
  37. Davy DT, Jepsen KJ, Krzypow DJ, Fondrk MT (1999) Nonlinear stress–strain behavior due to damage accumulation in cortical bone. In: Pedersen P, Bendsøe MP (eds) IUTAM symposium on synthesis in bio solid mechanics. Springer, Dordrecht, pp 361–372Google Scholar
  38. De Masi A, Gobron T, Presutti E (1995) Travelling fronts in non-local evolution equations. Arch Ration Mech Anal 132(2):143–205MathSciNetzbMATHCrossRefGoogle Scholar
  39. dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928MathSciNetzbMATHCrossRefGoogle Scholar
  40. Di Carlo A, Quiligotti S (2002) Growth and balance. Mech Res Commun 29(6):449–456MathSciNetzbMATHCrossRefGoogle Scholar
  41. Diebels S, Steeb H (2003) Stress and couple stress in foams. Comput Mater Sci 28(3–4):714–722CrossRefGoogle Scholar
  42. Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Math Mech Complex Syst 3(1):43–82MathSciNetzbMATHCrossRefGoogle Scholar
  43. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(7):951–978zbMATHCrossRefGoogle Scholar
  44. Eremeyev VA, Pietraszkiewicz W (2009) Phase transitions in thermoelastic and thermoviscoelastic shells. Arch Mech 61(1):41–67MathSciNetzbMATHGoogle Scholar
  45. Eremeyev VA, Pietraszkiewicz W (2011) Thermomechanics of shells undergoing phase transition. J Mech Phys Solids 59(7):1395–1412MathSciNetzbMATHCrossRefGoogle Scholar
  46. Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 21(2):210–221MathSciNetzbMATHCrossRefGoogle Scholar
  47. Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of micropolar mechanics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  48. Eremeyev VA, Skrzat A, Vinakurava A (2016) Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction. Strength Mater 48(4):573–582CrossRefGoogle Scholar
  49. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227CrossRefGoogle Scholar
  50. Franciosi P, Spagnuolo M, Salman OU (2018) Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continu Mech Thermodyn.  https://doi.org/10.1007/s00161-018-0668-0
  51. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1):1–9CrossRefGoogle Scholar
  52. Ganghoffer JF (2012) A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling. Int J Eng Sci 50(1):166–191MathSciNetzbMATHCrossRefGoogle Scholar
  53. George D, Allena R, Remond Y (2017) Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Comput Methods Biomech Biomed Eng 20(S1):91–92CrossRefGoogle Scholar
  54. George D, Allena R, Remond Y (2018a) Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Continu Mech Thermodyn.  https://doi.org/10.1007/s00161-018-0726-7:1-16 CrossRefGoogle Scholar
  55. George D, Allena R, Remond Y (2018b) A multiphysics stimulus for continuum mechanics bone remodeling. Math Mech Complex Syst 6(4):307–319MathSciNetCrossRefGoogle Scholar
  56. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge solid state science series, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  57. Giorgio I, Scerrato D (2017) Multi-scale concrete model with rate-dependent internal friction. Eur J Environ Civ Eng 21(7–8):821–839CrossRefGoogle Scholar
  58. Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech Model Mechanobiol 15(5):1325–1343.  https://doi.org/10.1007/s10237-016-0765-6 CrossRefGoogle Scholar
  59. Giorgio I, Andreaus U, dell’Isola F, Lekszycki T (2017a) Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech Lett 13:141–147CrossRefGoogle Scholar
  60. Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017b) Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math Mech Solids 22(9):1790–1805MathSciNetzbMATHCrossRefGoogle Scholar
  61. Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13(1):53–83CrossRefGoogle Scholar
  62. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523CrossRefGoogle Scholar
  63. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical modelling of biosystems, applied optimization, vol 102. Springer, Berlin, pp 1–44CrossRefGoogle Scholar
  64. Gottesman T, Hashin Z (1980) Analysis of viscoelastic behaviour of bones on the basis of microstructure. J Biomech 13(2):89–96CrossRefGoogle Scholar
  65. Graham JM, Ayati BP, Holstein SA, Martin JA (2013) The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8(5):e63884CrossRefGoogle Scholar
  66. Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2:6CrossRefGoogle Scholar
  67. Hambli R, Kourta A (2015) A theory for internal bone remodeling based on interstitial fluid velocity stimulus function. Appl Math Model 39(12):3525–3534MathSciNetCrossRefGoogle Scholar
  68. Hambli R, Rieger R (2012) Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes. Biomech Model Mechanobiol 11(1–2):83–93CrossRefGoogle Scholar
  69. Hambli R, Katerchi H, Benhamou CL (2011) Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10(1):133–145CrossRefGoogle Scholar
  70. Hambli R, Almitani KH, Chamekh A, Toumi H, Tavares JMR (2015) A theory for bone resorption based on the local rupture of osteocytes cells connections: a finite element study. Math Biosci 262:46–55MathSciNetzbMATHCrossRefGoogle Scholar
  71. Harrison KD, Cooper DML (2015) Modalities for visualization of cortical bone remodeling: the past, present, and future. Front Endocrinol 6:122CrossRefGoogle Scholar
  72. Himeno-Ando A, Izumi Y, Yamaguchi A, Iimura T (2012) Structural differences in the osteocyte network between the calvaria and long bone revealed by three-dimensional fluorescence morphometry, possibly reflecting distinct mechano-adaptations and sensitivities. Biochem Biophys Res Commun 417(2):765–770CrossRefGoogle Scholar
  73. Holzapfel GA, Ogden RW (eds) (2006) Mechanics of biological tissue. Springer, BerlinGoogle Scholar
  74. Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudala B, Slooff T (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11–12):1135–1150CrossRefGoogle Scholar
  75. Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8(3):147–159CrossRefGoogle Scholar
  76. Khalili N, Selvadurai APS (2003) A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophysical Res Lett 30(24):1–5CrossRefGoogle Scholar
  77. Komori T (2013) Functions of the osteocyte network in the regulation of bone mass. Cell Tissue Res 352(2):191–198CrossRefGoogle Scholar
  78. Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16(7):279–283CrossRefGoogle Scholar
  79. Kumar C, Jasiuk I, Dantzig J (2011) Dissipation energy as a stimulus for cortical bone adaptation. J Mech Mater Struct 6(1):303–319CrossRefGoogle Scholar
  80. Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444MathSciNetzbMATHCrossRefGoogle Scholar
  81. Lekszycki T, Bucci S, Del Vescovo D, Turco E, Rizzi NL (2017) A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 97(5):515–531MathSciNetCrossRefGoogle Scholar
  82. Li J, Slesarenko V, Rudykh S (2019) Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. Eur J Mech-A/Solids 73:126–136MathSciNetzbMATHCrossRefGoogle Scholar
  83. Lu Y, Lekszycki T (2017) Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math Mech Solids 22(10):1997–2010MathSciNetzbMATHCrossRefGoogle Scholar
  84. Lu Y, Lekszycki T (2018) New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption. Continu Mech Thermodyn.  https://doi.org/10.1007/s00161-018-0650-x
  85. Lurie S, Solyaev Y, Volkov A, Volkov-Bogorodskiy D (2018) Bending problems in the theory of elastic materials with voids and surface effects. Math Mech Solids 23(5):787–804MathSciNetzbMATHCrossRefGoogle Scholar
  86. Madeo A, George D, Lekszycki T, Nierenberger M, Remond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589CrossRefGoogle Scholar
  87. Madeo A, dell’Isola F, Darve F (2013) A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J Mech Phys Solids 61(11):2196–2211MathSciNetCrossRefGoogle Scholar
  88. Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10(3):179–222Google Scholar
  89. Matsuo K, Irie N (2008) Osteoclast–osteoblast communication. Arch Biochem Biophys 473(2):201–209CrossRefGoogle Scholar
  90. Menzel A (2005) Modelling of anisotropic growth in biological tissues. Biomech Model Mechanobiol 3(3):147–171CrossRefGoogle Scholar
  91. Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math Mech Complex Syst 3(3):285–308MathSciNetzbMATHCrossRefGoogle Scholar
  92. Misra A, Marangos O, Parthasarathy R, Spencer P (2013) Micro-scale analysis of compositional and mechanical properties of dentin using homotopic measurements. In: Andreaus U, Iacoviello D (eds) Biomedical imaging and computational modeling in biomechanics. Springer, Berlin, pp 131–141CrossRefGoogle Scholar
  93. Misra A, Parthasarathy R, Singh V, Spencer P (2015) Micro-poromechanics model of fluid-saturated chemically active fibrous media. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 95(2):215–234MathSciNetzbMATHCrossRefGoogle Scholar
  94. Mlodzik M (2002) Planar cell polarization: Do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 18(11):564–571CrossRefGoogle Scholar
  95. Morgan EF, Yeh OC, Chang WC, Keaveny TM (2001) Nonlinear behavior of trabecular bone at small strains. J Biomech Eng 123(1):1–9CrossRefGoogle Scholar
  96. Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13(4):503–512CrossRefGoogle Scholar
  97. Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27(11):1389–1394CrossRefGoogle Scholar
  98. Mullender MG, Huiskes R, Versleyen H, Buma P (1996) Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 14(6):972–979CrossRefGoogle Scholar
  99. Park HC, Lakes RS (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J Biomech 19(5):385–397CrossRefGoogle Scholar
  100. Peng L, Bai J, Zeng X, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28(3):227–233CrossRefGoogle Scholar
  101. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407(6803):535CrossRefGoogle Scholar
  102. Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain–gradient modelling. Proc R Soc A 474(2210):20170878MathSciNetzbMATHCrossRefGoogle Scholar
  103. Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 6(2):77–100MathSciNetzbMATHCrossRefGoogle Scholar
  104. Placidi L, Misra A, Barchiesi E (2018b) Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3):56MathSciNetzbMATHCrossRefGoogle Scholar
  105. Prakash C, Singh S, Farina I, Fraternali F, Feo L (2018) Physical-mechanical characterization of biodegradable Mg–3Si–HA composites. PSU Res Rev 2(2):152–174.  https://doi.org/10.1108/PRR-04-2018-0013 CrossRefGoogle Scholar
  106. Prendergast PJ, Taylor D (1994) Prediction of bone adaptation using damage accumulation. J Biomech 27(8):1067–1076CrossRefGoogle Scholar
  107. Rieger R, Hambli R, Jennane R (2011) Modeling of biological doses and mechanical effects on bone transduction. J Theor Biol 274(1):36–42CrossRefGoogle Scholar
  108. Rosa N, Simoes R, Magalhães FD, Marques AT (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37(8):719–728CrossRefGoogle Scholar
  109. Roux W (1895) Der kampf der teile im organismus. 1881. Leipzig: EngelmannGoogle Scholar
  110. Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–41CrossRefGoogle Scholar
  111. Sansalone V, Kaiser J, Naili S, Lemaire T (2013) Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. Biomech Model Mechanobiol 12(3):533–553CrossRefGoogle Scholar
  112. Santos A, Bakker AD, Klein-Nulend J (2009) The role of osteocytes in bone mechanotransduction. Osteoporos Int 20(6):1027–1031CrossRefGoogle Scholar
  113. Seppecher P (1996) Moving contact lines in the Cahn–Hilliard theory. Int J Eng Sci 34(9):977–992MathSciNetzbMATHCrossRefGoogle Scholar
  114. Seppecher P (2000) Second-gradient theory: application to Cahn–Hilliard fluids. In: Continuum thermomechanics. Springer, Berlin, pp 379–388Google Scholar
  115. Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Rep 3:1–5Google Scholar
  116. Smit TH, Huyghe JM, Cowin SC (2002) Estimation of the poroelastic parameters of cortical bone. J Biomech 35(6):829–835CrossRefGoogle Scholar
  117. Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech Res Commun 83:47–52CrossRefGoogle Scholar
  118. Spingarn C, Wagner D, Remond Y, George D (2017) Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-med Mater Eng 28(s1):S153–S158CrossRefGoogle Scholar
  119. Stern AR, Nicolella DP (2013) Measurement and estimation of osteocyte mechanical strain. Bone 54(2):191–195CrossRefGoogle Scholar
  120. Taber LA (2009) Towards a unified theory for morphomechanics. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3555–3583MathSciNetzbMATHCrossRefGoogle Scholar
  121. Turner CH (1991) Homeostatic control of bone structure: an application of feedback theory. Bone 12(3):203–217.  https://doi.org/10.1016/8756-3282(91)90043-i CrossRefGoogle Scholar
  122. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407CrossRefGoogle Scholar
  123. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—Is there a role for mechanosensing? Bone 45(2):321–329CrossRefGoogle Scholar
  124. Yoo A, Jasiuk I (2006) Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J Biomech 39(12):2241–2252CrossRefGoogle Scholar
  125. You L, Cowin SC, Schaffler MB, Weinbaum S (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 34(11):1375–1386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Structural and Geotechnical EngineeringUniversità di Roma La SapienzaRomeItaly
  2. 2.International Research Center for the Mathematics and Mechanics of Complex Systems - MeMoCSUniversità dell’AquilaL’AquilaItaly
  3. 3.NAAM Research Group, Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  5. 5.Warsaw University of TechnologyWarsawPoland
  6. 6.Department of Experimental Physiology and PathophysiologyMedical University of WarsawWarsawPoland

Personalised recommendations