Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 6, pp 1577–1590 | Cite as

Asymmetric cupula displacement due to endolymph vortex in the human semicircular canal

  • J. GoyensEmail author
  • M. J. B. M. Pourquie
  • C. Poelma
  • J. Westerweel
Original Paper

Abstract

The vestibular system in the inner ear senses angular head manoeuvres by endolymph fluid which deforms a gelatinous sensory structure (the cupula). We constructed computer models that include both the endolymph flow (using CFD modelling), the cupula deformation (using FEM modelling), and the interaction between both (using fluid–structure interaction modelling). In the wide utricle, we observe an endolymph vortex. In the initial time steps, both the displacement of the cupula and its restorative forces are still small. As a result, the endolymph vortex causes the cupula to deform asymmetrically in an S-shape. The asymmetric deflection increases the cupula strain near the crista and, as a result, enhances the sensitivity of the vestibular system. Throughout the head manoeuvre, the maximal cupula strain is located at the centre of the crista. The hair cells at the crista centre supply irregularly spiking afferents, which are more sensitive than the afferents from the periphery. Hence, the location of the maximal strain at the crista may also increase the sensitivity of the semicircular canal, but this remains to be tested. The cupula overshoots its relaxed position in a simulation of the Dix-Hallpike head manoeuvre (3 s in total). A much faster head manoeuvre of 0.222 s showed to be too short to cause substantial cupula overshoot, because the cupula time scale of both models (estimated to be 3.3 s) is an order of magnitude larger than the duration of this manoeuvre.

Keywords

Vestibular system Fluid–structure interaction Computational fluid dynamics Time constant Navier–Stokes equations Balance Finite element model 

Notes

Acknowledgements

This research was financially supported by FWO Project G0E02.14N to prof. Peter Aerts, FWO postdoctoral fellowship 12R5118N to J.G. and FWO travel Grant V428716N to J.G. for a long stay abroad at the Laboratory for Aero and Hydrodynamics at the TUDelft. Simulation software licences and computers were funded by FWO research Grant 1504018N to J.G and by Grant BOF/KP 24346 of University of Antwerp to prof. Peter Aerts. The authors wish to thank Dr. Sam Van Wassenbergh for advice on the construction of the simulation model, Ms. Josie Meaney-Ward for language correction, and two anonymous referees for their valuable comments and remarks.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2019_1160_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1801 kb)
10237_2019_1160_MOESM2_ESM.avi (5.4 mb)
Supplementary material 2 (AVI 5564 kb)

References

  1. Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150.  https://doi.org/10.1146/annurev.neuro.31.060407.125555 CrossRefGoogle Scholar
  2. Batchelor GK (2007) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  3. Berg T (2011) Solution stabilization for FSI and 6DOF with fluent. Ansys Inc. Report and TutorialGoogle Scholar
  4. Boselli F, Obrist D, Kleiser L (2013) Vortical flow in the utricle and the ampulla: a computational study on the fluid dynamics of the vestibular system. Biomech Model Mechanobiol 12:335–348.  https://doi.org/10.1007/s10237-012-0402-y CrossRefGoogle Scholar
  5. Boselli F, Kleiser L, Bockisch CJ et al (2014) Quantitative analysis of benign paroxysmal positional vertigo fatigue under canalithiasis conditions. J Biomech 47:1853–1860.  https://doi.org/10.1016/j.jbiomech.2014.03.019 CrossRefGoogle Scholar
  6. Cullen KE (2012) The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 35:185–196.  https://doi.org/10.1016/j.tins.2011.12.001 CrossRefGoogle Scholar
  7. Curthoys IS, Oman CM (1987) Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. Acta Otolaryngol 103:254–261CrossRefGoogle Scholar
  8. Dai M, Klein A, Cohen B, Raphan T (1999) Model-based study of the human cupular time constant. J Vestib Res 9:293–301Google Scholar
  9. Djukic T, Filipovic N (2017) Numerical modeling of the cupular displacement and motion of otoconia particles in a semicircular canal. Biomech Model Mechanobiol 16:1669–1680.  https://doi.org/10.1007/s10237-017-0912-8 CrossRefGoogle Scholar
  10. Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Ann Rev Neurosci 34:501–534.  https://doi.org/10.1146/annurev-neuro-061010-113710 CrossRefGoogle Scholar
  11. Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228:324–337.  https://doi.org/10.1111/joa.12308 CrossRefGoogle Scholar
  12. Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297.  https://doi.org/10.1007/s002210050033 CrossRefGoogle Scholar
  13. Goldberg JM, Fernández C (1977) Conduction times and background discharge of vestibular afferents. Brain Res 122:545–550CrossRefGoogle Scholar
  14. Grieser B, Obrist D, Kleiser L (2013) Validation of assumptions on the endolymph motion inside the semicircular canals of the inner ear. Internal Reports of the Institute of Fluid Dynamics, ETH Zurich.  https://doi.org/10.3929/ethz-a-007588055
  15. Grieser BJ, Kleiser L, Obrist D (2016) Identifying mechanisms behind the Tullio phenomenon: a computational study based on first principles. J Assoc Res Otolaryngol 17:103–118.  https://doi.org/10.1007/s10162-016-0553-0 CrossRefGoogle Scholar
  16. Grohé C, Tseng ZJ, Lebrun R et al (2016) Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J Anat 228:366–383.  https://doi.org/10.1111/joa.12421 CrossRefGoogle Scholar
  17. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science, 3rd edn. International edition. Prentice-Hall International Inc., New Jersey, p 1135. ISBN 0-83858068-8Google Scholar
  18. Kassemi M, Deserranno D, Oas JG (2005) Fluid–structural interactions in the inner ear. Comput Struct 83:181–189.  https://doi.org/10.1016/j.compstruc.2004.08.001 CrossRefGoogle Scholar
  19. Latash ML (2008) Neurophysiological basis of movement, 2nd edn. Human Kinetics, ChampaignGoogle Scholar
  20. Lorente de Nó R (1927) Contribucion al estudio matematico del organo del equilibrio. Trab Publ En La 7:202–206zbMATHGoogle Scholar
  21. McLaren JW, Hillman DE (1979) Displacement of the semicircular canal cupula during sinusoidal rotation. Neuroscience 4:2001–2008CrossRefGoogle Scholar
  22. Muller M (1990) Relationships between semicircular duct radii with some implications for time constants. Neth J Zool 40:173–202CrossRefGoogle Scholar
  23. Muller M, Verhagen JHG (1988) A new quantitative model of total endolymp flow in the system of semicircular ducts. J Theor Biol 134:473–501CrossRefGoogle Scholar
  24. Muller M, Verhagen JHG (2002) Optimization of the mechanical performance of a two-duct semicircular duct system part 1: dynamics and duct dimensions. J Theor Biol 216:409–424.  https://doi.org/10.1006/yjtbi.3003 CrossRefGoogle Scholar
  25. Njeugna E, Eichhorn JL, Kopp C, Harlicot P (1992) Mechanics of the cupula: effects of its thickness. J Vestib Res Equilib Orientat 2:227–234Google Scholar
  26. Obrist D (2008) Fluidmechanics of semicircular canals—revisited. Z Angew Math Phys 59:475–497.  https://doi.org/10.1007/s00033-007-6037-7 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Obrist D (2011) Fluid mechanics of the inner ear. Habilitation treatise in Fluid Mechanics at ETH Zurich. p 182.  https://doi.org/10.3929/ethz-a-007318979
  28. Obrist D, Hegemann S, Kronenberg D et al (2010) In vitro model of a semicircular canal: design and validation of the model and its use for the study of canalithiasis. J Biomech 43:1208–1214.  https://doi.org/10.1016/j.jbiomech.2009.11.027 CrossRefGoogle Scholar
  29. Oman CM, Marcus EN, Curthoys IS (1987) The influence of semicircular canal morphology on endolymph flow dynamics. An anatomically descriptive mathematical model. Acta Otolaryngol 103:1–13.  https://doi.org/10.3109/00016488709134691 CrossRefGoogle Scholar
  30. Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80:417–431.  https://doi.org/10.1007/s004220050536 CrossRefzbMATHGoogle Scholar
  31. Rabbitt RD, Boyle R, Highstein SM (1995) Mechanical indentation of the vestibular labyrinth and its relationship to head rotation in the toadfish, Opsanus tau. J Neurophysiol 73:2237–2260CrossRefGoogle Scholar
  32. Rabbitt RD, Damiano ER, Grant WJ (2004) Biomechanics of the semicircular canals and otolith organs. In: Highstein SM, Fay RR (eds) The vestibular system. Springer, New York, pp 153–201CrossRefGoogle Scholar
  33. Rabbitt RD, Breneman KD, King C et al (2009) Dynamic displacement of normal and detached semicircular canal cupula. JARO—J Assoc Res Otolaryngol 10:497–509.  https://doi.org/10.1007/s10162-009-0174-y CrossRefGoogle Scholar
  34. Santos CF, Belinha J, Gentil F et al (2017a) Biomechanical study of the vestibular system of the inner ear using a numerical method. Procedia IUTAM 24:30–37.  https://doi.org/10.1016/J.PIUTAM.2017.08.040 CrossRefGoogle Scholar
  35. Santos CF, Belinha J, Gentil F et al (2017b) An alternative 3D numerical method to study the biomechanical behaviour of the human inner ear semicircular canal. Acta Bioeng Biomech 19:3–15.  https://doi.org/10.5277/ABB-00498-2015-03 CrossRefGoogle Scholar
  36. Selva P, Oman CM, Stone HA (2009) Mechanical properties and motion of the cupula of the human semicircular canal. J Vestib Res Equilib Orientat 19:95–110.  https://doi.org/10.3233/VES-2009-0359 CrossRefGoogle Scholar
  37. Squire LR, Berg D, Bloom FE (2013) Fundamental neuroscience. Elsevier/Academic Press, AmsterdamGoogle Scholar
  38. Steer RW, Li, Yao T, Young LR, Meiry JL (1967) Physical properties of the labyrinthine fluids and quantification of the phenomenonof caloric stimulation. In: 3rd Symposium on the role of the vestibular organs in space exploration, pp 409–420Google Scholar
  39. Steinhausen W (1933) Über die beobachtung de cupula in den bogengangsam pullen des labyrinths des lebenden hechts. Pflugers Arch Gesamte Physiol Menschen Tiere 232:500–512CrossRefGoogle Scholar
  40. Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78:87–98.  https://doi.org/10.1017/S0022112076002346 CrossRefzbMATHGoogle Scholar
  41. Wu C, Hua C, Yang L et al (2011) Dynamic analysis of fluid–structure interaction of endolymph and cupula in the lateral semicircular canal of inner ear. J Hydrodyn Ser B 23:777–783.  https://doi.org/10.1016/S1001-6058(10)60176-X CrossRefGoogle Scholar
  42. Yamauchi A, Rabbitt RD, Boyle R, Highstein SM (2002) Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J Assoc Res Otolaryngol 3:26–44.  https://doi.org/10.1007/s101620010088 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Functional MorphologyUniversity of AntwerpWilrijkBelgium
  2. 2.Laboratory for Aero and HydrodynamicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations