Effects of macro-cracks on the load bearing capacity of articular cartilage

  • Amin KomeiliEmail author
  • Wesley Chau
  • Walter Herzog
Original Paper


Macro-cracks on the surface of articular cartilage are one of the hallmarks of early osteoarthritis and joint damage initiation. Macro-cracks negatively affect cartilage mechanobiology and load bearing capacity. The aim of this study was to quantify the changes in transient and steady-state force response of healthy cartilage in the presence of macro-cracks when compressed. Ten macro-cracks were created on the surface of intact articular cartilage. The force–time responses of intact cartilage and cartilage with macro-cracks (n = 22) were compared for multiple nominal axial compressive strain levels and strain rates. Experiments were simulated using a fiber-reinforced biphasic finite element model to gain insight into the possible mechanisms contributing to changes in the mechanical response of articular cartilage when introducing macro-cracks. We found a significant reduction in the transient and steady-state load bearing capacity of cartilage samples following the introduction of macro-cracks. Two mechanisms were identified as potential causes of this reduction: (1) an increase in permeability and associated decrease in fluid pressure, and (2) damage of the structural integrity of the solid matrix. The first cause was predicted by the finite element model, while the second cause was not.


Cartilage mechanics Macro-cracks Ramp compression testing Load bearing capacity Finite element modeling 



This work was supported by the Eyes High Postdoctoral Scholarship offered through the University of Calgary, The Canadian Institutes of Health Research (Grant No. FDN-143341) through a Foundation Scheme Grant, The Canada Research Chair Program (Grant No. 950-230603), and the Killam Memorial Chair for Interdisciplinary Research at the University of Calgary (Grant No. 150303).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. Abramson SB, Attur M, Amin AR, Clancy R (2001) Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep 3(6):535–541CrossRefGoogle Scholar
  2. Centers for Disease Control and Prevention (CDC) (2010) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2007–2009. MMWR 59(39):1261–1265Google Scholar
  3. Chen C-T, Burton-Wurster N, Lust G, Bank RA, Tekoppele JM (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17(6):870–879. CrossRefGoogle Scholar
  4. Chin-Purcell MV, Lewis JL (1996) Fracture of articular cartilage. J Biomech Eng 118(4):545–556CrossRefGoogle Scholar
  5. Chu CR, Williams AA, Coyle CH, Bowers ME (2012) Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther 14(3):212. CrossRefGoogle Scholar
  6. Comper WD, Williams RPW, Zamparo O (1990) Water transport in extracellular matrices. Connect Tissue Res 25(2):89–102. CrossRefGoogle Scholar
  7. Davis MA, Ettinger WH, Neuhaus JM, Cho SA, Hauck WW (1989) The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol 130(2):278–288CrossRefGoogle Scholar
  8. Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res Off Publ Orthop Res Soc 19(5):779–784. CrossRefGoogle Scholar
  9. Ewers BJ, Jayaraman VM, Banglmaier RF, Haut RC (2002) Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella. J Biomech 35(6):747–755. CrossRefGoogle Scholar
  10. Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G (1996) Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res 14(3):417–423. CrossRefGoogle Scholar
  11. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634. CrossRefGoogle Scholar
  12. Howell DS, Pelletier JP (1993) Etiopathogenesis of osteoarthritis. In: McCarty DJ, Koopman WJ (eds) Arthritis and allied conditions: a textbook of rheumatology, 12th edn. Lea & Febiger, Philadelphia, pp 1723–1734Google Scholar
  13. Howell DS, Sapolsky AI, Pita JC, Woessner JF (1976) The pathogenesis of osteoarthritis. Semin Arthritis Rheum 5(4):365–383. CrossRefGoogle Scholar
  14. Jeffrey JE, Gregory DW, Aspden RM (1995) Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Arch Biochem Biophys 322(1):87–96. CrossRefGoogle Scholar
  15. Komeili A, Abusara Z, Federico S, Herzog W (2018) A compression system for studying depth dependent mechanical properties of articular cartilage under dynamic loading conditions. Med Eng Phys 60:103–108. CrossRefGoogle Scholar
  16. Lewis JL, Johnson SL (2001) Collagen architecture and failure processes in bovine patellar cartilage. J Anat 199(Pt 4):483–492CrossRefGoogle Scholar
  17. Lewis JL, Deloria LB, Oyen-Tiesma M, Thompson RC, Ericson M, Oegema TR (2003) Cell death after cartilage impact occurs around matrix cracks. J Orthop Res Off Publ Orthop Res Soc 21(5):881–887. CrossRefGoogle Scholar
  18. Li L, Soulhat J, Buschmann M, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 14(9):673–682. CrossRefGoogle Scholar
  19. Maroudas A (1979) Physicochemical properties of articular cartilage. Adult Articul Cartil 2:215–290Google Scholar
  20. Martin JA, Buckwalter JA (2000) The role of chondrocyte-matrix interactions in maintaining and repairing articular cartilage. Biorheology 37(1–2):129–140Google Scholar
  21. Meachim G, Emery IH (1974) Quantitative aspects of patello-femoral cartilage fibrillation in Liverpool necropsies. Ann Rheum Dis 33(1):39–47CrossRefGoogle Scholar
  22. Men Y, Jiang Y, Chen L, Zhang C, Ye J (2017) On mechanical mechanism of damage evolution in articular cartilage. Mater Sci Eng C 78:79–87. CrossRefGoogle Scholar
  23. Morel V, Quinn TM (2004) Cartilage injury by ramp compression near the gel diffusion rate. J Orthop Res Off Publ Orthop Res Soc 22(1):145–151. CrossRefGoogle Scholar
  24. Morel V, Berutto C, Quinn TM (2006) Effects of damage in the articular surface on the cartilage response to injurious compression in vitro. J Biomech 39(5):924–930. CrossRefGoogle Scholar
  25. Owen JR, Wayne JS (2006) Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering. Biomech Model Mechanobiol 5(2–3):102–110. CrossRefGoogle Scholar
  26. Quinn TM, Grodzinsky AJ, Hunziker EB, Sandy JD (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res Off Publ Orthop Res Soc 16(4):490–499. CrossRefGoogle Scholar
  27. Repo RU, Finlay JB (1977) Survival of articular cartilage after controlled impact. J Bone Jt Surg Am Vol 59(8):1068–1076CrossRefGoogle Scholar
  28. Rieppo J, Hyttinen MM, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta I et al (2009) Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthr Cartil OARS 17(4):448–455. CrossRefGoogle Scholar
  29. Sadeghi H, Shepherd DET, Espino DM (2015) Effect of the variation of loading frequency on surface failure of bovine articular cartilage. Osteoarthr Cartil 23(12):2252–2258. CrossRefGoogle Scholar
  30. Sadeghi H, Lawless BM, Espino DM, Shepherd DET (2018) Effect of frequency on crack growth in articular cartilage. J Mech Behav Biomed Mater 77:40–46. CrossRefGoogle Scholar
  31. Sah RL, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1991) Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch Biochem Biophys 286(1):20–29CrossRefGoogle Scholar
  32. Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC (1998) Quantitative assessment of walking activity after total hip or knee replacement. J Bone Jt Surg Am Vol 80(1):54–59CrossRefGoogle Scholar
  33. Shen P-C, Shiau A-L, Jou I-M, Lee C-H, Tai M-H, Juan H-Y et al (2011) Inhibition of cartilage damage by pro-opiomelanocortin prohormone overexpression in a rat model of osteoarthritis. Exp Biol Med 236(3):334–340. CrossRefGoogle Scholar
  34. Silyn-Roberts H, Broom ND (1990) Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect Tissue Res 24(2):143–156CrossRefGoogle Scholar
  35. Stok K, Oloyede A (2003) A qualitative analysis of crack propagation in articular cartilage at varying rates of tensile loading. Connect Tissue Res 44(2):109–120CrossRefGoogle Scholar
  36. Stok K, Oloyede A (2007) Conceptual fracture parameters for articular cartilage. Clin Biomech 22(6):725–735. CrossRefGoogle Scholar
  37. Thambyah A, Broom N (2007) On how degeneration influences load-bearing in the cartilage–bone system: a microstructural and micromechanical study. Osteoarthr Cartil 15(12):1410–1423. CrossRefGoogle Scholar
  38. Verma P, Dalal K (2011) ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 112(12):3507–3514. CrossRefGoogle Scholar
  39. Verteramo A, Seedhom BB (2007) Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J Biomech 40(16):3580–3589. CrossRefGoogle Scholar
  40. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis: an untreatable disease? Nat Rev Drug Discov 4(4):331–344. CrossRefGoogle Scholar
  41. Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38(6):1195–1204. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations