Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 4, pp 845–881 | Cite as

Modeling and prediction of flow-induced hemolysis: a review

  • Mohammad M. Faghih
  • M. Keith SharpEmail author
Review Paper

Abstract

Despite decades of research related to hemolysis, the accuracy of prediction algorithms for complex flows leaves much to be desired. Fundamental questions remain about how different types of fluid stresses translate to red cell membrane failure. While cellular- and molecular-level simulations hold promise, spatial resolution to such small scales is computationally intensive. This review summarizes approaches to continuum-level modeling of hemolysis, a method that is likely to be useful well into the future for design of typical cardiovascular devices. Weaknesses are revealed for the Eulerian method of hemolysis prediction and for the linearized damage function. Wide variations in scaling of red cell membrane tension are demonstrated with different types of fluid stresses when the scalar fluid stress is the same, as well as when the energy dissipation rate is the same. New experimental data are needed for red cell damage in simple flows with controlled levels of different types of stresses, including laminar shear, laminar extension (normal), turbulent shear, and turbulent extension. Such data can be curve-fit to create more universal continuum-level models and can serve to validate numerical simulations.

Keywords

Mechanical blood damage Hemolysis prediction models Red blood cell membrane failure Ventricular assist devices Laminar and turbulent blood flows 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abkarian M, Viallat A (2008) Vesicles and red blood cells in shear flow. Soft Matter 4:653–657.  https://doi.org/10.1039/B716612E Google Scholar
  2. Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells under shear flow. Phys Rev Lett 98:188302Google Scholar
  3. AbouRjaili G, Torbey E, Alsaghir T, Olkovski Y, Costantino T (2012) Hemolytic anemia following mitral valve repair: a case presentation and literature review. Exp Clin Cardiol 17:248–250Google Scholar
  4. Adili N, Melizi M, Belabbas H, Achouri A (2014) Preliminary study of the influence of red blood cells size on the determinism of the breed in cattle. Vet Med Int 2014:429495.  https://doi.org/10.1155/2014/429495 Google Scholar
  5. Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV (2017) Pore formation in lipid membrane II: energy landscape under external stress. Sci Rep 7:12509.  https://doi.org/10.1038/s41598-017-12749-x Google Scholar
  6. Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31:677–688.  https://doi.org/10.1111/j.1525-1594.2007.00446.x Google Scholar
  7. Andersen MN, Gabrieli E, Zizzi JA (1965) Chronic hemolysis in patients with ball-valve prostheses. J Thorac Cardiovasc Surg 50:501–510Google Scholar
  8. Antiga L, Steinman DA (2009) Rethinking turbulence in blood. Biorheology 46:77–81.  https://doi.org/10.3233/bir-2009-0538 Google Scholar
  9. Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28:1002–1015.  https://doi.org/10.1111/j.1525-1594.2004.00072.x Google Scholar
  10. Arwatz G, Smits AJ (2013) A viscoelastic model of shear-induced hemolysis in laminar flow. Biorheology 50:45–55.  https://doi.org/10.3233/bir-130626 Google Scholar
  11. Bae YB, Jang HK, Shin TH, Phukan G, Tran TT, Lee G, Hwang WR, Kim JM (2015) Microfluidic assessment of mechanical cell damage by extensional stress. Lab Chip 16:96–103.  https://doi.org/10.1039/c5lc01006c Google Scholar
  12. Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM (1990) Estimation of Reynolds stresses within the Penn State left ventricular assist device. ASAIO Trans 36:M274–M278Google Scholar
  13. Baldwin JT, Deutsch S, Petrie HL, Tarbell JM (1993) Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J Biomech Eng 115:396–403.  https://doi.org/10.1115/1.2895503 Google Scholar
  14. Barbaro V, Grigioni M, Daniele C, D’Avenio G, Boccanera G (1997a) 19 mm sized bileaflet valve prostheses’ flow field investigated by bidimensional laser Doppler anemometry (part I: velocity profiles). Int J Artif Organs 20:622–628Google Scholar
  15. Barbaro V, Grigioni M, Daniele C, D’Avenio G, Boccanera G (1997b) 19 mm sized bileaflet valve prostheses’ flow field investigated by bidimensional laser Doppler anemometry (part II: maximum turbulent shear stresses). Int J Artif Organs 20:629–636Google Scholar
  16. Barns S, Balanant MA, Sauret E, Flower R, Saha S, Gu Y (2017) Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed Eng Online 16:140.  https://doi.org/10.1186/s12938-017-0429-5 Google Scholar
  17. Barthès-Biesel D, Rallison JM (1981) The time-dependent deformation of a capsule freely suspended in a linear shear flow. J Fluid Mech 113:251–267.  https://doi.org/10.1017/S0022112081003480 zbMATHGoogle Scholar
  18. Baskurt OK (1996) Deformability of red blood cells from different species studied by resistive pulse shape analysis technique. Biorheology 33:169–179.  https://doi.org/10.1016/0006-355X(96)00014-5 Google Scholar
  19. Baskurt OK, Meiselman HJ (2013) Comparative hemorheology. Clin Hemorheol Microcirc 53:61–70.  https://doi.org/10.3233/ch-2012-1576 Google Scholar
  20. Becker SM, Kuznetsov AV (2015) Heat transfer and fluid flow in biological processes. Academic Press, RaleighGoogle Scholar
  21. Bento D, Rodrigues R, Faustino V, Pinho D, Fernandes C, Pereira A, Garcia V, Miranda J, Lima R (2018) Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements. Micromachines 9:151Google Scholar
  22. Blackshear PLJ, Dorman FD, Steinbach JH, Maybach EJ, Singh A, Collingham RE (1966) Shear, wall interaction and hemolysis. ASAIO J 12:113–120Google Scholar
  23. Bludszuweit C (1995a) Model for a general mechanical blood damage prediction. Artif Organs 19:583–589Google Scholar
  24. Bludszuweit C (1995b) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19:590–596Google Scholar
  25. Bluestein M, Mockros LF (1969) Hemolytic effects of energy dissipation in flowing blood. Med Biol Eng 7:1–16.  https://doi.org/10.1007/bf02474665 Google Scholar
  26. Boal D (2012) Mechanics of the cell. Cambridge University Press, CambridgeGoogle Scholar
  27. Boal DH, Seifert U, Zilker A (1992) Dual network model for red blood cell membranes. Phys Rev Lett 69:3405–3408Google Scholar
  28. Boehning F, Mejia T, Schmitz-Rode T, Steinseifer U (2014) Hemolysis in a laminar flow-through Couette shearing device: an experimental study. Artif Organs 38:761–765.  https://doi.org/10.1111/aor.12328 Google Scholar
  29. Boey SK, Boal DH, Discher DE (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75:1573–1583.  https://doi.org/10.1016/s0006-3495(98)74075-5 Google Scholar
  30. Brodeur MT, Sutherland DW, Koler RD, Starr A, Kimsey JA, Griswold HE (1965) Red blood cell survival in patients with aortic valvular disease and ball-valve prostheses. Circulation 32:570–581.  https://doi.org/10.1161/01.cir.32.4.570 Google Scholar
  31. Brown CHI, Lemuth RF, Hellums JD, Leverett LB, Alfrey CP (1975) Response of human platelets to shear stress. ASAIO J 21:35–39Google Scholar
  32. Burton AC (1972) Physiology and biophysics of the circulation; an introductory text. Year Book Medical Publishers, ChicagoGoogle Scholar
  33. Burton NM, Bruce LJ (2011) Modelling the structure of the red cell membrane. Biochem Cell Biol 89:200–215.  https://doi.org/10.1139/o10-154 Google Scholar
  34. Buys AV, Van Rooy M-J, Soma P, Van Papendorp D, Lipinski B, Pretorius E (2013) Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol 12:25.  https://doi.org/10.1186/1475-2840-12-25 Google Scholar
  35. Cardenas N, Mohanty SK (2012) Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy. Proc SPIE.  https://doi.org/10.1117/12.909758 Google Scholar
  36. Cardoso C, Cachado P, Garcia T (2013) Hemolytic anemia after mitral valve repair: a case report. BMC Res Notes 6:165.  https://doi.org/10.1186/1756-0500-6-165 Google Scholar
  37. Çengel YA, Cimbala JM (2006) Fluid mechanics: fundamentals and applications. McGraw-Hill, BostonGoogle Scholar
  38. Chen Y, Sharp MK (2011) A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements. Artif Organs 35:145–156.  https://doi.org/10.1111/j.1525-1594.2010.01050.x Google Scholar
  39. Chen Y, Kent TL, Sharp MK (2013) Testing of models of flow-induced hemolysis in blood flow through hypodermic needles. Artif Organs 37:256–266.  https://doi.org/10.1111/j.1525-1594.2012.01569.x Google Scholar
  40. Coupier G, Kaoui B, Podgorski T, Misbah C (2008) Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys Fluids 20:111702.  https://doi.org/10.1063/1.3023159 zbMATHGoogle Scholar
  41. Cowger JA, Romano MA, Shah P, Shah N, Mehta V, Haft JW, Aaronson KD, Pagani FD (2014) Hemolysis: a harbinger of adverse outcome after left ventricular assist device implant. J Heart Lung Transplant 33:35–43.  https://doi.org/10.1016/j.healun.2013.08.021 Google Scholar
  42. Cristini V, Kassab GS (2005) Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Ann Biomed Eng 33:1724–1727.  https://doi.org/10.1007/s10439-005-8776-y Google Scholar
  43. Da Q, Teruya M, Guchhait P, Teruya J, Olson JS, Cruz MA (2015) Free hemoglobin increases von Willebrand factor-mediated platelet adhesion in vitro: implications for circulatory devices. Blood 126:2338–2341.  https://doi.org/10.1182/blood-2015-05-648030 Google Scholar
  44. Danker G, Vlahovska PM, Misbah C (2009) Vesicles in Poiseuille flow. Phys Rev Lett 102:148102Google Scholar
  45. Dewitz TS, Hung TC, Martin RR, McIntire LV (1977) Mechanical trauma in leukocytes. J Lab Clin Med 90:728–736Google Scholar
  46. Ding J, Niu S, Chen Z, Zhang T, Griffith BP, Wu ZJ (2015) Shear-induced hemolysis: species differences. Artif Organs 39:795–802.  https://doi.org/10.1111/aor.12459 Google Scholar
  47. Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75:1584–1597Google Scholar
  48. Dooley PN, Quinlan NJ (2009) Effect of eddy length scale on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37:2449–2458.  https://doi.org/10.1007/s10439-009-9789-8 Google Scholar
  49. Down LA, Papavassiliou DV, O’Rear EA (2011) Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann Biomed Eng 39:1632–1642.  https://doi.org/10.1007/s10439-011-0262-0 Google Scholar
  50. Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci U S A 109:20808–20813.  https://doi.org/10.1073/pnas.1210236109 Google Scholar
  51. Ellis JT, Wick TM, Yoganathan AP (1998) Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J Heart Valve Dis 7:376–386Google Scholar
  52. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51.  https://doi.org/10.1007/s12575-009-9008-x Google Scholar
  53. Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585–595Google Scholar
  54. Ezzeldin HM, de Tullio MD, Vanella M, Solares SD, Balaras E (2015) A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model. Ann Biomed Eng 43:1398–1409.  https://doi.org/10.1007/s10439-015-1273-z Google Scholar
  55. Faghih MM, Sharp MK (2016) Extending the power-law hemolysis model to complex flows. J Biomech Eng.  https://doi.org/10.1115/1.4034786 Google Scholar
  56. Faghih MM, Sharp MK (2018a) Characterization of erythrocyte membrane tension for hemolysis prediction in complex flows. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-017-0995-2 Google Scholar
  57. Faghih MM, Sharp MK (2018b) Evaluation of energy dissipation rate as a predictor of mechanical blood damage. Artif Organs 1:1.  https://doi.org/10.1111/aor.13418 Google Scholar
  58. Faghih MM, Sharp MK (2018c) Solvent-based bonding of PMMAPMMA for microfluidic applications. Microsyst Technol.  https://doi.org/10.1007/s00542-018-4266-7 Google Scholar
  59. Faghih MM, Sharp MK (2019) On Eulerian versus Lagrangian models of mechanical blood damage and the linearized damage function. J Artif Organs (accepted) Google Scholar
  60. Farinas MI, Garon A, Lacasse D, N’Dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696.  https://doi.org/10.1115/1.2241663 Google Scholar
  61. Faustino V, Pinho D, Yaginuma T, Calhelha RC, Kim GM, Arana S, Ferreira ICFR, Oliveira MSN, Lima R (2014) Flow of red blood cells suspensions through hyperbolic microcontractions. In: Lima R, Imai Y, Ishikawa T, Oliveira NMS (eds) Visualization and simulation of complex flows in biomedical engineering. Springer, Dordrecht, pp 151–163.  https://doi.org/10.1007/978-94-007-7769-9_9 Google Scholar
  62. Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98:2215–2225.  https://doi.org/10.1016/j.bpj.2010.02.002 Google Scholar
  63. Fedosov DA, Peltomäki M, Gompper G (2014) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10:4258–4267.  https://doi.org/10.1039/C4SM00248B Google Scholar
  64. Forstrom RJ (1969) A new measure of erythrocyte membrane strength - the jet fragility test. PhD. thesis, University of MinnesotaGoogle Scholar
  65. Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ (2012) A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 134:081002.  https://doi.org/10.1115/1.4007092 Google Scholar
  66. Fuller GG, Leal LG (1980) Flow birefringence of dilute polymer solutions in two-dimensional flows. Rheol Acta 19:580–600.  https://doi.org/10.1007/BF01517512 Google Scholar
  67. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  68. Galdi GP, Rannacher R, Robertson AM, Turek S (2008) Hemodynamical flows modeling, analysis and simulation. Birkhäuser Verlag AG, BaselzbMATHGoogle Scholar
  69. Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28:1016–1025.  https://doi.org/10.1111/j.1525-1594.2004.00026.x Google Scholar
  70. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297.  https://doi.org/10.1007/s10439-007-9411-x Google Scholar
  71. Gesenhues L, Pauli L, Behr M (2016) Strain-based blood damage estimation for computational design of ventricular assist devices. Int J Artif Organs 39:166–170.  https://doi.org/10.5301/ijao.5000484 Google Scholar
  72. Giersiepen M, Krause U, Knott E, Reul H, Rau G (1989) Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow. Int J Artif Organs 12:261–269Google Scholar
  73. Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306Google Scholar
  74. Girdhar G, Bluestein D (2008) Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Rev Med Devices 5:167–181.  https://doi.org/10.1586/17434440.5.2.167 Google Scholar
  75. Goldsmith HL, Marlow J (1972) Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc R Soc Lond B Biol Sci 182:351–384.  https://doi.org/10.1098/rspb.1972.0084 Google Scholar
  76. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109:7630–7635.  https://doi.org/10.1073/pnas.1200107109 Google Scholar
  77. Goubergrits L (2006) Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev Med Devices 3:527–531.  https://doi.org/10.1586/17434440.3.5.527 Google Scholar
  78. Goubergrits L, Osman J, Mevert R, Kertzscher U, Pothkow K, Hege HC (2016) Turbulence in blood damage modeling. Int J Artif Organs 39:160–165.  https://doi.org/10.5301/ijao.5000476 Google Scholar
  79. Grigioni M, Daniele C, D’Avenio G, Barbaro V (1999) A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J Biomech 32:1107–1112Google Scholar
  80. Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Barbaro V (2004) The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 28:467–475.  https://doi.org/10.1111/j.1525-1594.2004.00015.x Google Scholar
  81. Grigioni M, Morbiducci U, D’Avenio G, Benedetto GD, Gaudio CD (2005) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4:249–260.  https://doi.org/10.1007/s10237-005-0005-y Google Scholar
  82. Hellem AJ (1960) The adhesiveness of human blood platelets in vitro. Scand J Clin Lab Invest 12(Suppl):1–117Google Scholar
  83. Helms CC, Marvel M, Zhao W, Stahle M, Vest R, Kato GJ, Lee JS, Christ G, Gladwin MT, Hantgan RR, Kim-Shapiro DB (2013) Mechanisms of hemolysis-associated platelet activation. J Thromb Haemost 11:2148–2154.  https://doi.org/10.1111/jth.12422 Google Scholar
  84. Heuser G, Opitz R (1980) A Couette viscometer for short time shearing of blood. Biorheology 17:17–24Google Scholar
  85. Hiroshi N, Gerhard G (2005) Vesicle dynamics in shear and capillary flows. J Phys Condens Matter 17:S3439Google Scholar
  86. Hochmuth RM, Waugh RE (1987) Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol 49:209–219.  https://doi.org/10.1146/annurev.ph.49.030187.001233 Google Scholar
  87. Hochmuth RM, Evans CA, Wiles HC, McCown JT (1983) Mechanical measurement of red cell membrane thickness. Science 220:101–102Google Scholar
  88. Houchin DN, Munn JI, Parnell BL (1958) A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area. Blood 13:1185–1191Google Scholar
  89. Hudzik B, Kaczmarski J, Pacholewicz J, Zakliczynski M, Gasior M, Zembala M (2015) Von Willebrand factor in patients on mechanical circulatory support: a double-edged sword between bleeding and thrombosis. Kardiochirurgia i torakochirurgia polska = Pol J Cardio-Thorac Surg 12:233–237.  https://doi.org/10.5114/kitp.2015.54459 Google Scholar
  90. Hund SJ, Antaki JF, Massoudi M (2010) On the representation of turbulent stresses for computing blood damage. Int J Eng Sci 48:1325–1331.  https://doi.org/10.1016/j.ijengsci.2010.09.003 zbMATHGoogle Scholar
  91. Ishii K, Hosoda K, Nishida M, Isoyama T, Saito I, Ariyoshi K, Inoue Y, Ono T, Nakagawa H, Sato M, Hara S, Lee X, Wu SY, Imachi K, Abe Y (2015) Hydrodynamic characteristics of the helical flow pump. J Artif Organs 18:206–212.  https://doi.org/10.1007/s10047-015-0828-y Google Scholar
  92. Iuliano L, Violi F, Pedersen JZ, Pratico D, Rotilio G, Balsano F (1992) Free radical-mediated platelet activation by hemoglobin released from red blood cells. Arch Biochem Biophys 299:220–224Google Scholar
  93. Jhun CS, Stauffer MA, Reibson JD, Yeager EE, Newswanger RK, Taylor JO, Manning KB, Weiss WJ, Rosenberg G (2018) Determination of Reynolds shear stress level for hemolysis. ASAIO J 64:63–69.  https://doi.org/10.1097/mat.0000000000000615 Google Scholar
  94. Jones SA (1995) A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann Biomed Eng 23:21–28MathSciNetGoogle Scholar
  95. Ju M, Ye SS, Namgung B, Cho S, Low HT, Leo HL, Kim S (2015) A review of numerical methods for red blood cell flow simulation. Comput Methods Biomech Biomed Eng 18:130–140.  https://doi.org/10.1080/10255842.2013.783574 Google Scholar
  96. Kameneva MV, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J 50:418–423Google Scholar
  97. Kawase Y, Moo-Young M (1990) Mathematical models for design of bioreactors: applications of: Kolmogoroff’s theory of isotropic turbulence. Chem Eng J 43:B19–B41.  https://doi.org/10.1016/0300-9467(90)80048-H MathSciNetGoogle Scholar
  98. Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech 120:27–47.  https://doi.org/10.1017/S0022112082002651 zbMATHGoogle Scholar
  99. Keshaviah PR (1976) Hemolysis in the accelerated flow region of an abrupt contraction. PhD Thesis, University of Minnesota, St. Paul, MNGoogle Scholar
  100. Khoo DP, Cookson AN, Gill HS, Fraser KH (2018) Normal fluid stresses are prevalent in rotary ventricular assist devices: a computational fluid dynamics analysis. Int J Artif Organs 41:738–751.  https://doi.org/10.1177/0391398818792757 Google Scholar
  101. Klose HJ, Volger E, Brechtelsbauer H, Heinich L, Schmid-Schonbein H (1972) Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation. Pflugers Arch 333:126–139Google Scholar
  102. Kodippili GC, Spector J, Kang GE, Liu H, Wickrema A, Ritchie K, Low PS (2010) Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton. Br J Haematol 150:592–600.  https://doi.org/10.1111/j.1365-2141.2010.08268.x Google Scholar
  103. Koleva I, Rehage H (2012) Deformation and orientation dynamics of polysiloxane microcapsules in linear shear flow. Soft Matter 8:3681–3693.  https://doi.org/10.1039/C2SM07182G Google Scholar
  104. Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Math Phys Sci 434:9–13MathSciNetzbMATHGoogle Scholar
  105. Kon K, Maeda N, Shiga T (1987) Erythrocyte deformation in shear flow: influences of internal viscosity, membrane stiffness, and hematocrit. Blood 69:727–734Google Scholar
  106. Koshiyama K, Wada S (2011) Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching. J Biomech 44:2053–2058.  https://doi.org/10.1016/j.jbiomech.2011.05.014 Google Scholar
  107. Kramer JW (2000) Normal hematology of cattle, sheep and goats. In: Feldman BF, Zinkl JG, Jain NC (eds) Schalm’s veterinary hematology, 5th edn. Lippincott Williams & Wilkins, New York, pp 1075–1084Google Scholar
  108. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434.  https://doi.org/10.1146/annurev.fluid.29.1.399 MathSciNetGoogle Scholar
  109. Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36:476–483.  https://doi.org/10.1002/bit.260360507 Google Scholar
  110. Laugel JF, Beissinger RL (1983) Low stress shear-induced hemolysis in capillary flow. Trans Am Soc Artif Intern Organs 29:158–162Google Scholar
  111. Lee S, Ahn KH, Lee SJ, Sun K, Goedhart PT, Hardeman MR (2004) Shear induced damage of red blood cells monitored by the decrease of their deformability. Korea-Aust Rheol J 16:141–146Google Scholar
  112. Lee SS, Antaki JF, Kameneva MV, Dobbe JG, Hardeman MR, Ahn KH, Lee SJ (2007) Strain hardening of red blood cells by accumulated cyclic supraphysiological stress. Artif Organs 31:80–86.  https://doi.org/10.1111/j.1525-1594.2007.00344.x Google Scholar
  113. Lee H, Tatsumi E, Taenaka Y (2009a) Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device. ASAIO J 55:348–354.  https://doi.org/10.1097/MAT.0b013e3181a793e0 Google Scholar
  114. Lee SS, Yim Y, Ahn KH, Lee SJ (2009b) Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 11:1021–1027.  https://doi.org/10.1007/s10544-009-9319-3 Google Scholar
  115. Leverett LB, Hellums JD, Alfrey CP, Lynch EC (1972) Red blood cell damage by shear stress. Biophys J 12:257–273Google Scholar
  116. Li H, Lykotrafitis G (2014) Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys J 107:642–653.  https://doi.org/10.1016/j.bpj.2014.06.031 Google Scholar
  117. Li X, Vlahovska PM, Karniadakis GE (2013) Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37.  https://doi.org/10.1039/C2SM26891D Google Scholar
  118. Lippi G (2012) Hemolysis: an unresolved dispute in laboratory medicine. De Gruyter, BerlinGoogle Scholar
  119. Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122:118–124Google Scholar
  120. Lokhandwalla M, Sturtevant B (2001) Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields. Phys Med Biol 46:413–437Google Scholar
  121. Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34:1361–1364Google Scholar
  122. Lux SE, Palek J (1995) Disorders of the red cell membrane. In: Handin RI, Lux SE, Stossel TP (eds) Blood: principles and practice of hematology. Lippincott, Philadelphia, pp 1701–1818Google Scholar
  123. Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Nonnewton Fluid Mech 78:227–241.  https://doi.org/10.1016/S0377-0257(98)00065-2 zbMATHGoogle Scholar
  124. Maymir JC, Deutsch S, Meyer RS, Geselowitz DB, Tarbell JM (1998) Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann Biomed Eng 26:146–156.  https://doi.org/10.1114/1.86 Google Scholar
  125. Mcgraw LA (1992) Blood cell deformability in uniaxial extensional flow. Carnegie Mellon University, PittsburghGoogle Scholar
  126. Misbah C (2006) Vacillating breathing and tumbling of vesicles under shear flow. Phys Rev Lett 96:028104Google Scholar
  127. Misbah C (2012) Vesicles, capsules and red blood cells under flow. J Phys Conf Ser 392:012005Google Scholar
  128. Mitoh A, Yano T, Sekine K, Mitamura Y, Okamoto E, Kim DW, Yozu R, Kawada S (2003) Computational fluid dynamics analysis of an intra-cardiac axial flow pump. Artif Organs 27:34–40Google Scholar
  129. Mizuno T, Tsukiya T, Taenaka Y, Tatsumi E, Nishinaka T, Ohnishi H, Oshikawa M, Sato K, Shioya K, Takewa Y, Takano H (2002) Ultrastructural alterations in red blood cell membranes exposed to shear stress. ASAIO J 48:668–670Google Scholar
  130. Morris DR, Williams AR (1979) The effects of suspending medium viscosity on erythrocyte deformation and haemolysis in vitro. Biochim Biophys Acta 550:288–296.  https://doi.org/10.1016/0005-2736(79)90215-3 Google Scholar
  131. Morshed KN, Bark D Jr, Forleo M, Dasi LP (2014) Theory to predict shear stress on cells in turbulent blood flow. PLoS ONE 9:e105357.  https://doi.org/10.1371/journal.pone.0105357 Google Scholar
  132. Moulden TH, Frost W (1977) Handbook of turbulence. Plenum Press, New YorkGoogle Scholar
  133. Mueller MR, Schima H, Engelhardt H, Salat A, Olsen DB, Losert U, Wolner E (1993) In vitro hematological testing of rotary blood pumps: remarks on standardization and data interpretation. Artif Organs 17:103–110Google Scholar
  134. Naito K, Mizuguchi K, Nose Y (1994) The need for standardizing the index of hemolysis. Artif Organs 18:7–10Google Scholar
  135. Nakahara T, Yoshida F (1986) Mechanical effects on rates of hemolysis. J Biomed Mater Res 20:363–374.  https://doi.org/10.1002/jbm.820200308 Google Scholar
  136. Namdee K, Carrasco-Teja M, Fish MB, Charoenphol P, Eniola-Adefeso O (2015) Effect of Variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers. Sci Rep 5:11631.  https://doi.org/10.1038/srep11631 Google Scholar
  137. Nevaril CG, Lynch EC, Alfrey CP Jr, Hellums JD (1968) Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med 71:784–790Google Scholar
  138. Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D (2008) Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J 54:64–72.  https://doi.org/10.1097/mat.0b013e31815d6898 Google Scholar
  139. Nyboe C, Funder JA, Smerup MH, Nygaard H, Hasenkam JM (2006) Turbulent stress measurements downstream of three bileaflet heart valve designs in pigs. Eur J Cardiothorac Surg 29:1008–1013.  https://doi.org/10.1016/j.ejcts.2006.03.013 Google Scholar
  140. Nygaard H, Giersiepen M, Hasenkam JM, Westphal D, Paulsen PK, Reul H (1990) Estimation of turbulent shear stresses in pulsatile flow immediately downstream of two artificial aortic valves in vitro. J Biomech 23:1231–1238Google Scholar
  141. Nygaard H, Giersiepen M, Hasenkam JM, Reul H, Paulsen PK, Rovsing PE, Westphal D (1992) Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J Biomech 25:429–440Google Scholar
  142. Offeman RD, Williams MC (1976) Shear-induced hemolysis: effects of blood chemistry (including aging in storage) and shearing surfaces. Biomater Med Devices Artif Organs 4:49–79Google Scholar
  143. Oliveira M, Alves MA, Pinho FT, McKinley GH (2007) Viscous fluid flow through microfabricated hperbolic contractions. Exp Fluids 43:437–451.  https://doi.org/10.1007/s00348-007-0306-2 Google Scholar
  144. Omar HR, Mirsaeidi M, Socias S, Sprenker C, Caldeira C, Camporesi EM, Mangar D (2015) Plasma free hemoglobin is an independent predictor of mortality among patients on extracorporeal membrane oxygenation support. PLoS ONE 10:e0124034.  https://doi.org/10.1371/journal.pone.0124034 Google Scholar
  145. Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Imai Y, Yamaguchi T (2012) Tension of red blood cell membrane in simple shear flow. Phys Rev E 86:056321Google Scholar
  146. Ozturk M, O’Rear EA, Papavassiliou DV (2015) Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations. Artif Organs 39:E227–E239.  https://doi.org/10.1111/aor.12572 Google Scholar
  147. Ozturk M, O’Rear E, Papavassiliou D (2016) Reynolds stresses and hemolysis in turbulent flow examined by threshold analysis. Fluids 1:42Google Scholar
  148. Paul R, Apel J, Klaus S, Schugner F, Schwindke P, Reul H (2003) Shear stress related blood damage in laminar couette flow. Artif Organs 27:517–529Google Scholar
  149. Pauli L, Nam J, Pasquali M, Behr M (2013) Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int J Numer Methods Biomed Eng 29:1148–1160.  https://doi.org/10.1002/cnm.2576 MathSciNetGoogle Scholar
  150. Polaschegg HD (2009) Red blood cell damage from extracorporeal circulation in hemodialysis. Semin Dial 22:524–531.  https://doi.org/10.1111/j.1525-139X.2009.00616.x Google Scholar
  151. Poorkhalil A, Amoabediny G, Tabesh H, Behbahani M, Mottaghy K (2016) A new approach for semiempirical modeling of mechanical blood trauma. Int J Artif Organs 39:171–177.  https://doi.org/10.5301/ijao.5000474 Google Scholar
  152. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge.  https://doi.org/10.1017/cbo9780511840531 zbMATHGoogle Scholar
  153. Popov EP, Nagarajan S, Lu ZA (1976) Mechanics of materials. Prentice-Hall, Englewood CliffsGoogle Scholar
  154. Quinlan NJ (2014) Mechanical loading of blood cells in turbulent flow. In: Doyle B, Miller K, Wittek A, Nielsen MFP (eds) Computational biomechanics for medicine: fundamental science and patient-specific applications. Springer, New York, pp 1–13.  https://doi.org/10.1007/978-1-4939-0745-8_1 Google Scholar
  155. Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35:1347–1356.  https://doi.org/10.1007/s10439-007-9308-8 Google Scholar
  156. Rand RP (1964) Mechanical properties of the red cell membrane: II. Viscoelastic breakdown of the membrane. Biophys J 4:303–316Google Scholar
  157. Rand RP, Burton AC (1964) Mechanical properties of the red cell membrane: I. Membrane stiffness and intracellular pressure. Biophys J 4:115–135Google Scholar
  158. Richardson E (1974) Deformation and haemolysis of red cells in shear flow. Proc R Soc Lond A Math Phys Eng Sci 338:129–153.  https://doi.org/10.1098/rspa.1974.0078 zbMATHGoogle Scholar
  159. Richardson E (1975) Applications of a theoretical model for haemolysis in shear flow. Biorheology 12:27–37Google Scholar
  160. Rodgers BM, Sabiston DC (1969) Hemolytic anemia following prosthetic valve replacement. Circulation 39:I-155–I-161.  https://doi.org/10.1161/01.cir.39.5s1.i-155 Google Scholar
  161. Rodrigues RO, Faustino V, Pinto E, Pinho D, Lima R (2013) Red blood cells deformability index assessment in a hyperbolic microchannel: the diamide and glutaraldehyde effect. WebmedCentral Biomed Eng 4(8):WMC004375.  https://doi.org/10.9754/journal.wmc.2013.004375 Google Scholar
  162. Roland L, Drillich M, Iwersen M (2014) Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Investig 26:592–598.  https://doi.org/10.1177/1040638714546490 Google Scholar
  163. Rooney JA (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169:869–871Google Scholar
  164. Sakota D, Sakamoto R, Sobajima H, Yokoyama N, Waguri S, Ohuchi K, Takatani S (2008) Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma. Artif Organs 32:785–791.  https://doi.org/10.1111/j.1525-1594.2008.00631.x Google Scholar
  165. Sallam AM, Hwang NH (1984) Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797Google Scholar
  166. Sayed HM, Dacie JV, Handley DA, Lewis SM, Cleland WP (1961) Haemolytic anaemia of mechanical origin after open heart surgery. Thorax 16:356–360Google Scholar
  167. Shadden SC, Hendabadi S (2013) Potential fluid mechanic pathways of platelet activation. Biomech Model Mechanobiol 12:467–474.  https://doi.org/10.1007/s10237-012-0417-4 Google Scholar
  168. Shakeri M, Khodarahmi I, Sharp MK (2012) Preliminary imaging of red blood cells in turbulent flow. In: ASME 2012 summer bioengineering conference, Puerto Rico, USA, 2012, pp 887–888Google Scholar
  169. Shapira Y, Vaturi M, Sagie A (2009) Hemolysis associated with prosthetic heart valves: a review. Cardiol Rev 17:121–124.  https://doi.org/10.1097/CRD.0b013e31819f1a83 Google Scholar
  170. Sharp MK, Mohammad SF (1998) Scaling of hemolysis in needles and catheters. Ann Biomed Eng 26:788–797.  https://doi.org/10.1114/1.65 Google Scholar
  171. Shi L, Pan TW, Glowinski R (2012) Deformation of a single red blood cell in bounded Poiseuille flows. Phys Rev E Stat Nonlinear Soft Matter Phys 85:016307.  https://doi.org/10.1103/PhysRevE.85.016307 Google Scholar
  172. Shivakumaraswamy T, Mishra P, Radhakrishnan B, Khandekar J, Agrawal N, Patwardhan A, Khandeparkar J (2006) Intravascular hemolysis in patients with normally functioning mechanical heart valves in mitral position. Indian J Thorac Cardiovasc Surg 22:215–218.  https://doi.org/10.1007/s12055-006-0005-2 Google Scholar
  173. Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Annu Rev Fluid Mech 21:167–200.  https://doi.org/10.1146/annurev.fl.21.010189.001123 MathSciNetzbMATHGoogle Scholar
  174. Smith JE (1987) Erythrocyte membrane: structure, function, and pathophysiology. Vet Pathol 24:471–476Google Scholar
  175. Sohrabi S, Liu Y (2017) A cellular model of shear-induced hemolysis. Artif Organs 41:E80–e91.  https://doi.org/10.1111/aor.12832 Google Scholar
  176. Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB (2003) Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 27:938–941Google Scholar
  177. Sousa PC, Pinho FT, Oliveira MS, Alves MA (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:14108.  https://doi.org/10.1063/1.3567888 Google Scholar
  178. Stein PD, Sabbah HN (1976) Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ Res 39:58–65Google Scholar
  179. Surgenor DM, Bishop CW (1974) The red blood cell. Academic Press, New YorkGoogle Scholar
  180. Sutera SP (1977) Flow-induced trauma to blood cells. Circ Res 41:2–8Google Scholar
  181. Sutera SP, Mehrjardi MH (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 15:1–10Google Scholar
  182. Tamagawa M, Akamatsu T, Saitoh K (1996) Prediction of hemolysis in turbulent shear orifice flow. Artif Organs 20:553–559Google Scholar
  183. Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58:363–372.  https://doi.org/10.1097/MAT.0b013e318254833b Google Scholar
  184. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, CambridgezbMATHGoogle Scholar
  185. Thurston GB (1989) Plasma release-cell layering theory for blood flow. Biorheology 26:199–214Google Scholar
  186. Thurston GB (1990) Light transmission through blood in oscillatory flow. Biorheology 27:685–700Google Scholar
  187. Tomaiuolo G (2014) Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8:051501.  https://doi.org/10.1063/1.4895755 Google Scholar
  188. Tran-Son-Tay R, Sutera SP, Zahalak GI, Rao PR (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys J 51:915–924.  https://doi.org/10.1016/s0006-3495(87)83419-7 Google Scholar
  189. Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP (2002) An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J Biomech Eng 124:155–165Google Scholar
  190. Tse WT, Lux SE (1999) Red blood cell membrane disorders. Br J Haematol 104:2–13.  https://doi.org/10.1111/j.1365-2141.1999.01130.x Google Scholar
  191. Valladolid C, Yee A, Cruz MA (2018) von Willebrand factor, free hemoglobin and thrombosis in ECMO. Front Med 5:228.  https://doi.org/10.3389/fmed.2018.00228 Google Scholar
  192. Vallés J, Santos MT, Aznar J, Martı́nez M, Moscardó A, Piñón M, Broekman MJ, Marcus AJ (2002) Platelet-erythrocyte interactions enhance αIIbβ3 integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 99:3978–3984.  https://doi.org/10.1182/blood.v99.11.3978 Google Scholar
  193. Viallat A, Abkarian M (2014) Red blood cell: from its mechanics to its motion in shear flow. Int J Lab Hematol 36:237–243.  https://doi.org/10.1111/ijlh.12233 Google Scholar
  194. Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ (2007) Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 110:2166–2172.  https://doi.org/10.1182/blood-2006-12-061697 Google Scholar
  195. Vitale F, Nam J, Turchetti L, Behr M, Raphael R, Annesini MC, Pasquali M (2014) A multiscale, biophysical model of flow-induced red blood cell damage. AICHE J 60:1509–1516.  https://doi.org/10.1002/aic.14318 Google Scholar
  196. Walker HK, Hall WD, Hurst JW (1990) Clinical methods: the history, physical and laboratory examinations. Butterworths, BostonGoogle Scholar
  197. Williams AR, Hughes DE, Nyborg WL (1970) Hemolysis near a transversely oscillating wire. Science 169:871–873.  https://doi.org/10.1126/science.169.3948.871 Google Scholar
  198. Wu J, Antaki JF, Snyder TA, Wagner WR, Borovetz HS, Paden BE (2005) Design optimization of blood shearing instrument by computational fluid dynamics. Artif Organs 29:482–489.  https://doi.org/10.1111/j.1525-1594.2005.29082.x Google Scholar
  199. Yaginuma T, Pereira AI, Rodrigues PJ, Lima R, Oliveira MSN, Ishikawa T, Yamaguchi T (2011) Flow of red blood cells through a microfluidic extensional device: An image analysis assessment. In: Computational vision and medical image processing: VipIMAGE 2011. CRC Press, pp 217–220.  https://doi.org/10.1201/b11570-45
  200. Yaginuma T, Oliveira MSN, Lima R, Ishikawa T, Yamaguchi T (2013) Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 7:054110.  https://doi.org/10.1063/1.4820414 Google Scholar
  201. Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim DW, Nishimura I, Murabayashi S, Yozu R (2003) An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 27:920–925Google Scholar
  202. Yazdani A, Bagchi P (2012) Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys Rev E 85:056308Google Scholar
  203. Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR (1995) A mathematical model for shear-induced hemolysis. Artif Organs 19:576–582Google Scholar
  204. Yen JH, Chen SF, Chern MK, Lu PC (2014) The effect of turbulent viscous shear stress on red blood cell hemolysis. J Artif Organs Off J Jpn Soc Artif Organs 17:178–185.  https://doi.org/10.1007/s10047-014-0755-3 Google Scholar
  205. Yen J-H, Chen S-F, Chern M-K, Lu P-C (2015) The effects of extensional stress on red blood cell hemolysis. Biomed Eng Appl Basis Commun 27:1550042.  https://doi.org/10.4015/S1016237215500428 Google Scholar
  206. Yoon YZ, Kotar J, Yoon G, Cicuta P (2008) The nonlinear mechanical response of the red blood cell. Phys Biol 5:036007.  https://doi.org/10.1088/1478-3975/5/3/036007 Google Scholar
  207. Yu H, Engel S, Janiga G, Thevenin D (2017) A review of hemolysis prediction models for computational fluid dynamics. Artif Organs 41:603–621.  https://doi.org/10.1111/aor.12871 Google Scholar
  208. Zeng NF, Ristenpart WD (2014) Mechanical response of red blood cells entering a constriction. Biomicrofluidics 8:064123.  https://doi.org/10.1063/1.4904058 Google Scholar
  209. Zhang Juntao, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ (2006) Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs 30:168–177.  https://doi.org/10.1111/j.1525-1594.2006.00203.x Google Scholar
  210. Zhang Tao, Taskin ME, Fang H-B, Pampori A, Jarvik R, Griffith BP, Wu ZJ (2011) Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif Organs 35:1180–1186.  https://doi.org/10.1111/j.1525-1594.2011.01243.x Google Scholar
  211. Zhang R, Zhang C, Zhao Q, Li D (2013) Spectrin: structure, function and disease. Sci China Life Sci 56:1076–1085.  https://doi.org/10.1007/s11427-013-4575-0 Google Scholar
  212. Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ (2006) Microscopic investigation of erythrocyte deformation dynamics. Biorheology 43:747–765Google Scholar
  213. Zhu A (2000) Introduction to porcine red blood cells: implications for xenotransfusion. Semin Hematol 37:143–149.  https://doi.org/10.1016/S0037-1963(00)90039-8 Google Scholar
  214. Zimmer R, Steegers A, Paul R, Affeld K, Reul H (2000) Velocities, shear stresses and blood damage potential of the leakage jets of the Medtronic Parallel bileaflet valve. Int J Artif Organs 23:41–48Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biofluid Mechanics Laboratory, Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations