Influence of an iris-fixed phakic intraocular lens on the transport of nutrients by the aqueous humor

  • R. Agujetas
  • A. C. Marcos
  • J. I. Fernández-Vigo
  • J. M. MontaneroEmail author
Original Paper


We study numerically the influence of an iris-fixed phakic intraocular lens (PIOL) on the transport of nutrients by the aqueous humor across a realistic model of the human eye. The Boussinesq equations are solved to calculate the velocity field both in the anterior and posterior chambers. The transport of the nutrient is modeled as that of a passive scalar convected by that velocity field and diffused by the concentration gradient. The nutrient is assumed to be adsorbed at the non-vascularized tissues, i.e., the crystalline lens and cornea endothelium. The adsorption rates at the crystalline and cornea endothelium are supposed to be proportional to the nutrient concentration there. The comparison between the results obtained with and without the PIOL allows us to quantify the influence of this device on the nutrient supply from the aqueous humor. The amount of nutrient adsorbed onto the crystalline is hardly affected by the presence of the PIOL in the anterior chamber, even though there is an iridotomy in this case. When the PIOL is implanted, the flux adsorbed onto the cornea endothelium increases up to around 32% for the highest value of the adsorption coefficient, and hardly varies for the other values of this parameter. This counterintuitive effect is explained by the efficient role played by the iridotomy in evacuating the nutrient from the posterior to the anterior chamber. Based on these results, one can estimate the variation of glucose available in the cornea endothelium after implanting the PIOL, and discuss potential effects on the cell metabolism. These simulations can be regarded as a first attempt to shed light on the mechanisms responsible for the supply of oxygen and glucose to eye avascular structures like the cornea endothelium and crystalline.


CFD Aqueous humor flow Intraocular lens Nutrient transport 



Partial support from the Junta de Extremadura through Grant No. GR15014 (partially financed by FEDER funds) is gratefully acknowledged.


  1. Abouali O, Modareszadeh A, Ghaffarieh A, Tu J (2012) Investigation of saccadic eye movement effects on the fluid dynamic in the anterior chamber. J Biomech Eng 134(021):002Google Scholar
  2. Bert RJ, Caruthers SD, Jara H, Krejza J, Melhem ER, Kolodny NH, Patz S, Freddo TF (2006) Demonstration of an anterior diffusional pathway for solutes in the normal human eye with high spatial resolution contrast-enhanced dynamic MR imaging. Investig Ophthalmol Vis Sci 47:5153–5162CrossRefGoogle Scholar
  3. Canning CR, Greaney MJ, Dewynne JN, Fitt AD (2002) Fluid flow in the anterior chamber of a human eye. IMA Int J Math Med Biol 19:31–60CrossRefGoogle Scholar
  4. Dvoriashyna M, Repetto R, Romano MR, Tweedy JH (2017) Aqueous humour flow in the posterior chamber of the eye and its modifications due to pupillary block and iridotomy. Math Med Biol 0:1–21Google Scholar
  5. Fernández-Vigo JI, Marcos AC, Agujetas R, Montanero JM, Sánchez-Guillén I, García-Feijóo J, Pandal-Blanco A, Fernández-Vigo JA, Macarro-Merino A (2018) Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens. PLoS ONE CrossRefGoogle Scholar
  6. Fitt AD, Gonzalez G (2006) Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber. Bull Math Biol 68:53–71MathSciNetCrossRefGoogle Scholar
  7. Guell JL, Morral M, Gris O, Gaytan J, Sisquella M, Manero F (2007) Evaluation of verisyse and Artiflex phakic intraocular lenses during accommodation using visante optical coherence tomography. J Cataract Refract Surg 33:1398–1404CrossRefGoogle Scholar
  8. Guell JL, Morral M, Kook D, Kohnen T (2010) Phakic intraocular lenses part 1: historical overview, current models, selection criteria, and surgical techniques. J Cataract Refract Surg 36:1976–1993CrossRefGoogle Scholar
  9. Heys JJ, Barocas VH (2002) A boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle. Ann Biomed Eng 30:392–401CrossRefGoogle Scholar
  10. Ismail Z, Fitt AD, Please CP (2013) A fluid mechanical explanation of the spontaneous reattachment of a previously detached descemet membrane. Math Med Biol 30:339–355MathSciNetCrossRefGoogle Scholar
  11. Jonker SMR, Berendschot TTJM, Ronden AE, Saelens IEY, Nuijts NJCBRMMA (2018) Long-term endothelial cell loss in patients with artisan myopia and artisan toric phakic intraocular lenses: 5- and 10-year results. Ophthalmology 125:486–494CrossRefGoogle Scholar
  12. Kapnisis K, Doormaal MV, Ethier CR (2009) Modeling aqueous humor collection from the human eye. J Biomech 42:2454–2457CrossRefGoogle Scholar
  13. Kawamorita T, Uozato H, Shimizu K (2012) Fluid dynamics simulation of aqueous humour in a posterior chamber phakic intraocular lens with a central perforation. Graefes Arch Clin Exp Ophthalmol 250:935–939CrossRefGoogle Scholar
  14. Khongar PD, Pralits JO, Soleri P, Repetto R (2017) Aqueous flow in the presence of a perforated iris-fixated intraocular lens. Meccanica 52:577–586MathSciNetCrossRefGoogle Scholar
  15. Khongar PD, Pralits JO, Cheng X, Pinsky P, Soleri P, Repetto R (2018) Effect of an iris-fixated intraocular lens on corneal metabolism: a numerical study. J Model Ophthalmol 2:97–101Google Scholar
  16. Kohnen T, Koo D, Morral M, Guell JL (2010) Phakic intraocular lenses part 2: results and complications. J Cataract Refract Surg 36:1976–1993CrossRefGoogle Scholar
  17. Larrea X, de Courten C, Feingold V, Burger J, Buchler P (2007) Oxygen and glucose distribution after intracorneal lens implantation. Optom Vis Sci 84:1074–1081CrossRefGoogle Scholar
  18. Oyaas J, Storro I, Svendsen H, Levine DW (1995) The effective diffusion coefficient and the distribution constant for small molecules in calcium–alginate gel beads. Biotechnol Bioeng 47:492–500CrossRefGoogle Scholar
  19. Repetto R, Pralits JO, Siggers JH, Soleri P (2015) Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow. Cornea 56:3061–3068Google Scholar
  20. Siggers JH, Ethier CR (2012) Fluid mechanics of the eye. Annu Rev Fluid Mech 44:347–372MathSciNetCrossRefGoogle Scholar
  21. Tritton DJ (1988) Physical fluid dynamics. Oxford University Press, OxfordzbMATHGoogle Scholar
  22. Tweedy JH, Pralits JO, Repetto R, Soleri P (2017) Flow in the anterior chamber of the eye with an implanted iris-fixated artificial lens. Math Med Biol 0:1–23Google Scholar
  23. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson Education Limited, LondonGoogle Scholar
  24. Villamarin A, Roy S, Hasballa R, Vardoulis O, Reymond P, Stergiopulos N (2012) 3D simulation of the aqueous flow in the human eye. Med Eng Phys 34:1462–1470CrossRefGoogle Scholar
  25. Wang W, Qian X, Song H, Zhang M, Liu Z (2016) Fluid and structure coupling analysis of the interaction between aqueous humor and iris. BioMed Eng OnLine 15:569–586Google Scholar
  26. Yamamoto Y, Uno T, Shisida K, Xue L, Shiraishi A, Zheng X, Ohashi Y (2006) Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium. Arch Ophthalmol 124:387–393CrossRefGoogle Scholar
  27. Zurawski CA, McCarey BE, Schmidt FH (1989) Glucose consumption in cultured corneal cells. Curr Eye Res 8:349–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain
  2. 2.Depto. de Expresión GráficaUniversidad de ExtremaduraBadajozSpain
  3. 3.Depto. de OftalmologíaHospital Universitario Clínico San Carlos Instituto de Investigación Sanitaria San CarlosMadridSpain

Personalised recommendations