Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 2, pp 503–529 | Cite as

The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling

  • Martin R. PfallerEmail author
  • Julia M. Hörmann
  • Martina Weigl
  • Andreas Nagler
  • Radomir Chabiniok
  • Cristóbal Bertoglio
  • Wolfgang A. Wall
Original Paper

Abstract

The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here, we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial–myocardial interaction can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model not only can provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial–myocardial interaction which cannot be assessed in clinical measurements yet.

Keywords

Cardiac mechanical modeling Pericardium Boundary conditions Finite element simulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arutunyan AH (2015) Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 308(11):H1317–H1320 PMID: 25795710Google Scholar
  2. Arvidsson PM, Carlsson M, Kovács SJ, Arheden H (2015) Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 309(6):H1094–H1096 PMID: 26374902Google Scholar
  3. Asner L et al (2016) Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol 15(5):1121–1139Google Scholar
  4. Augustin CM et al (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646MathSciNetzbMATHGoogle Scholar
  5. Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living heart project: a robust and integrative simulator for human heart function. Eur J Mech 48:38–47MathSciNetzbMATHGoogle Scholar
  6. Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Medical image computing and computer-assisted intervention–MICCAI 2001. Springer, BerlinGoogle Scholar
  7. Bowman AW, Kovács SJ (2003) Assessment and consequences of the constant-volume attribute of the four-chambered heart. Am J Physiol Heart Circul Physiol 285(5):H2027–H2033Google Scholar
  8. Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H (2007) Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 292(3):H1452–H1459Google Scholar
  9. Chabiniok R et al (2012) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5):609–630Google Scholar
  10. Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng 10(2):189–211Google Scholar
  11. Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375MathSciNetzbMATHGoogle Scholar
  12. Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circul Physiol 283(6):H2650–H2659Google Scholar
  13. Doost SN, Ghista D, Su B, Zhong L, Morsi YS (2016) Heart blood flow simulation: a perspective review. BioMed Eng OnLine 15(1):101Google Scholar
  14. Emilsson K, Brudin L, Wandt B (2001) The mode of left ventricular pumping: is there an outer contour change in addition to the atrioventricular plane displacement? Clin Physiol 21(4):437–446Google Scholar
  15. Eriksson T, Prassl A, Plank G, Holzapfel G (2013) Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids 18(6):592–606MathSciNetGoogle Scholar
  16. Fritz T, Wieners C, Seemann G, Steen H, Dössel O (2013) Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol 13(3):1–15Google Scholar
  17. Fujii K et al (1994) Effect of left ventricular contractile performance on passive left atrial filling–clinical study using radionuclide angiography. Clin Cardiol 17(5):258–262Google Scholar
  18. Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42(11):1732–1739Google Scholar
  19. Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72zbMATHGoogle Scholar
  20. Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331MathSciNetzbMATHGoogle Scholar
  21. Gil D et al (2013) What a difference in biomechanics cardiac fiber makes. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds). Statistical atlases and computational models of the heart. Imaging and modelling challenges, Lecture Notes in Computer Science, vol 7746. Springer, Berlin, pp 253–260Google Scholar
  22. Glantz SA et al (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 42(3):433–41Google Scholar
  23. Gültekin O, Sommer G, Holzapfel GA (2016) An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput Methods Biomech Biomed Eng 19(15):1647–1664Google Scholar
  24. Hammond HK, White FC, Bhargava V, Shabetai R (1992) Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol Heart Circ Physiol 263(6):H1675–H1681Google Scholar
  25. Heiberg E et al (2010) Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging 10(1):1Google Scholar
  26. Hills BA, Butler BD (1985) Phospholipids identified on the pericardium and their ability to impart boundary lubrication. Ann Biomed Eng 13(6):573–586Google Scholar
  27. Hirschvogel M, Bassilious M, Jagschies L, Wildhirt S, Gee MW (2016) A monolithic 3D–0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int J Numer Methods Biomed Eng 33(8):e2842MathSciNetGoogle Scholar
  28. Holt JP (1970) The normal pericardium. Am J Cardiol 26(5):455–465Google Scholar
  29. Holt JP, Rhode EA, Kines H, Ruth H (1960) Pericardial and ventricular pressure. Circ Res 8(6):1171–1181Google Scholar
  30. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R S A Math Phys Eng Sci 367(1902):3445–3475MathSciNetzbMATHGoogle Scholar
  31. Hörmann JM et al (2017) Multiphysics modeling of the atrial systole under standard ablation strategies. Cardiovasc Eng Technol 8(2):205–218Google Scholar
  32. Hörmann JM et al (2018) An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology. Int J Numer Methods Biomed Eng 34(5):e2959MathSciNetGoogle Scholar
  33. Hörmann JM, Pfaller MR, Bertoglio C, Avena L, Wall WA (2018) Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image-registration. Int J Numer Methods Biomed Eng. arXiv:1812.02587
  34. Iaizzo PA (2015) Handbook of cardiac anatomy, physiology, and devices. Springer, BerlinGoogle Scholar
  35. Jöbsis PD et al (2007) The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. Am J Physiol Heart Circ Physiol 293(6):H3379–H3387Google Scholar
  36. Kerckhoffs RC et al (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1):1–18Google Scholar
  37. Land S, Niederer SA (2017) Influence of atrial contraction dynamics on cardiac function. Int J Numer Methods Biomed EngGoogle Scholar
  38. Lee JM, Boughner DR (1985) Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57(3):475–481Google Scholar
  39. Lee LC, Sundnes J, Genet M, Wenk JF, Wall ST (2016) An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech Model Mechanobiol 15(4):791–803Google Scholar
  40. Maksuti E, Bjällmark A, Broomé M (2015) Modelling the heart with the atrioventricular plane as a piston unit. Med Eng Phys 37(1):87–92Google Scholar
  41. Mansi T (2010) Image-based physiological and statistical models of the heart: application to tetralogy of Fallot. Ph.d thesis, École Nationale Supérieure des Mines de ParisGoogle Scholar
  42. Marchesseau S, Delingette H, Sermesant M, Ayache N (2013) Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech Model Mechanobiol 12(4):815–831Google Scholar
  43. Martini FH, Timmons MJ (2015) Human anatomy. Pearson Education, LondonGoogle Scholar
  44. Moireau P et al (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18MathSciNetGoogle Scholar
  45. Moireau P et al (2013) Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech Model Mechanobiol 12(3):475–496Google Scholar
  46. Nagler A, Bertoglio C, Stoeck CT, Kozerke S, Wall WA (2017) Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Med Image Anal 39:56–77Google Scholar
  47. Nagler A, Bertoglio C, Ortiz M, Wall WA (2016) A spatially varying mathematical representation of the biventricular cardiac fiber architecture. Center for Mathematical Modeling, Universidad de Chile, Technical report, Institute for Computational Mechanics, Technische Universität MünchenGoogle Scholar
  48. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94Google Scholar
  49. Nikou A, Gorman RC, Wenk JF (2016) Sensitivity of left ventricular mechanics to myofiber architecture: a finite element study. Proc Inst Mech Eng Part H J Eng Med 230(6):594–598 PMID: 26975892Google Scholar
  50. Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8(3):253–261Google Scholar
  51. Rabkin S, Hsu P (1975) Mathematical and mechanical modeling of stress-strain relationship of pericardium. Am J Physiol 229(4):896–900Google Scholar
  52. Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287Google Scholar
  53. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28):1743–1759MathSciNetGoogle Scholar
  54. Santamore WP, Constantinescu MS, Bogen D, Johnston WE (1990) Nonuniform distribution of normal pericardial fluid. Basic Res Cardiol 85(6):541–549Google Scholar
  55. Santiago A et al (2018) Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Methods Biomed Eng 34(12):e3140MathSciNetGoogle Scholar
  56. Sermesant M (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1):201–215Google Scholar
  57. Shabetai R (2003) The pericardium. Springer, New YorkGoogle Scholar
  58. Shi Y, Lawford P, Hose R (2011) Review of 0-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 10:33Google Scholar
  59. Smiseth OA, Frais MA, Kingma I, Smith ER, Tyberg JV (1985) Assessment of pericardial constraint in dogs. Circulation 71(1):158–64Google Scholar
  60. Sommer G (2015) Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater 24:172–192Google Scholar
  61. Spodick DH (1983) The normal and diseased pericardium: current concepts of pericardial physiology, diagnosis and treatment. J Am Coll Cardiol 1(1):240–251Google Scholar
  62. Spodick DH (1996) The pericardium: a comprehensive textbook. Informa Health Care, LondonGoogle Scholar
  63. Standring S (2015) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier, AmsterdamGoogle Scholar
  64. Sudak F (1965) Intrapericardial and intracardiac pressures and the events of the cardiac cycle in Mustelus canis (Mitchill). Comp Biochem Physiol 14(4):689–705Google Scholar
  65. Sutton J, Gibson DG (1977) Measurement of postoperative pericardial pressure in man. Br Heart J 39(1):1–6Google Scholar
  66. Tyberg JV et al (1986) The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 73(3):428–32Google Scholar
  67. Ubbink S, Bovendeerd P, Delhaas T, Arts T, Vosse F (2006) Towards model-based analysis of cardiac MR tagging data: Relation between left ventricular shear strain and myofiber orientation. Med Image Anal 10(4):632–641. Special issue on functional imaging and modelling of the heart (FIMH 2005)Google Scholar
  68. Uribe S et al (2008) Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 248(2):606–614Google Scholar
  69. Wall WA et al (2018) Baci: a parallel multiphysics simulation environment. Technical report, Institute for Computational Mechanics, Technische Universität MünchenGoogle Scholar
  70. Westerhof N, Lankhaar J-W, Westerhof BE (2008) The arterial windkessel. Med Biol Eng Comput 47(2):131–141Google Scholar
  71. Willenheimer R, Cline C, Erhardt L, Israelsson B (1997) Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. Heart 78(3):230–236Google Scholar
  72. Wong KCL et al (2010) Cardiac motion estimation using a proActive deformable model: evaluation and sensitivity analysis. Springer, BerlinGoogle Scholar
  73. Yin FC, Strumpf RK, Chew PH, Zeger SL (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J Biomech 20(6):577–589Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin R. Pfaller
    • 1
    Email author
  • Julia M. Hörmann
    • 1
  • Martina Weigl
    • 1
  • Andreas Nagler
    • 1
  • Radomir Chabiniok
    • 2
    • 3
    • 4
  • Cristóbal Bertoglio
    • 5
    • 6
  • Wolfgang A. Wall
    • 1
  1. 1.Institute for Computational MechanicsTechnical University of MunichGarching b. MünchenGermany
  2. 2.InriaParis-Saclay UniversityPalaiseauFrance
  3. 3.LMS, Ecole Polytechnique, CNRSParis-Saclay UniversityPalaiseauFrance
  4. 4.School of Biomedical Engineering and Imaging Sciences (BMEIS)St Thomas’ Hospital, King’s College LondonLondonUK
  5. 5.Bernoulli Institute for Mathematics, Computer Science and Artificial IntelligenceUniversity of GroningenGroningenThe Netherlands
  6. 6.Center for Mathematical ModelingUniversidad de ChileSantiagoChile

Personalised recommendations