Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 2, pp 435–451 | Cite as

Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage

  • Matteo Bianchi
  • Gil Marom
  • Ram P. Ghosh
  • Oren M. Rotman
  • Puja Parikh
  • Luis Gruberg
  • Danny BluesteinEmail author
Original Paper
  • 203 Downloads

Abstract

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model’s predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.

Keywords

TAVR TAVI Finite element analysis FEA Computational fluid dynamics CFD 

Notes

Acknowledgement

This work was financially supported by NIH-NIBIB (1U01EB026414-01, DB) and by a NIH-NIBIB Quantum award Phase II-C (1U01EB012487-0, DB). This work was supported by computing resources from the SeaWulf cluster at Stony Brook University. ANSYS Fluent was provided by an ANSYS Academic Partnership with Stony Brook University.

Supplementary material

10237_2018_1094_MOESM1_ESM.tif (118 kb)
Figure S1: Schematic of the steps of the fluid domain extraction process and the setup of the flow analyses (TIFF 118 kb)

References

  1. Abdelghani M, Soliman OII, Schultz C, Vahanian A, Serruys PW (2016) Adjudicating paravalvular leaks of transcatheter aortic valves: a critical appraisal. Eur Heart J 37:2627–2644.  https://doi.org/10.1093/eurheartj/ehw115 CrossRefGoogle Scholar
  2. Aftab SM, Mohd Rafie AS, Razak NA, Ahmad KA (2016) Turbulence Model Selection for Low Reynolds Number Flows. PLoS ONE 11:e0153755.  https://doi.org/10.1371/journal.pone.0153755 CrossRefGoogle Scholar
  3. Bagur R et al (2012) Need for permanent pacemaker as a complication of transcatheter aortic valve implantation and surgical aortic valve replacement in elderly patients with severe aortic stenosis and similar baseline electrocardiographic findings. JACC Cardiovasc Interv 5:540–551.  https://doi.org/10.1016/j.jcin.2012.03.004 CrossRefGoogle Scholar
  4. Bailey J, Curzen N, Bressloff NW (2015) Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient-specific aortic root. Comput Methods Biomech Biomed Eng 1:1–12.  https://doi.org/10.1080/10255842.2015.1058928 Google Scholar
  5. Bailey J, Curzen N, Bressloff NW (2016) The impact of imperfect frame deployment and rotational orientation on stress within the prosthetic leaflets during transcatheter aortic valve implantation. J Biomech.  https://doi.org/10.1016/j.jbiomech.2016.12.031 Google Scholar
  6. Barbanti M et al (2013) Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 128:244–253.  https://doi.org/10.1161/circulationaha.113.002947 CrossRefGoogle Scholar
  7. Bianchi M, Marom G, Ghosh RP, Fernandez HA, Taylor JR Jr, Slepian MJ, Bluestein D (2016) Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif Organs 40:E292–e304.  https://doi.org/10.1111/aor.12806 CrossRefGoogle Scholar
  8. Bosi GM, Capelli C, Hong Cheang M, Delahunty N, Mullen M, Taylor AM, Schievano S (2018) Population-specific material properties of the implantation site for transcatheter aortic valve replacement finite element simulations. J Biomech.  https://doi.org/10.1016/j.jbiomech.2018.02.017 Google Scholar
  9. Bosmans B, Famaey N, Verhoelst E, Bosmans J, Vander Sloten J (2016) A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation. J Biomech.  https://doi.org/10.1016/j.jbiomech.2016.06.024 Google Scholar
  10. Capelli C et al (2012) Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput 50:183–192.  https://doi.org/10.1007/s11517-012-0864-1 CrossRefGoogle Scholar
  11. Chang J, Rong-Hui L, Sheng-Ping Z, Li-Zhen W, Yu-Bo F (2018) Effect of stent designs on the paravalvular regurgitation of transcatheter aortic valve implantation. Int J Comput Methods.  https://doi.org/10.1142/s0219876218420070 Google Scholar
  12. Chiu W-C et al (2014) Thromboresistance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulation-optimized HeartAssist 5 VAD. J Biomech Eng 136:021014–021019.  https://doi.org/10.1115/1.4026254 CrossRefGoogle Scholar
  13. Chung W, Cho J, Belytschko T (1998) On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng Comput 15:750–776CrossRefzbMATHGoogle Scholar
  14. Couture EL, Lepage S, Masson J-B, Daneault B (2017) Very late transcatheter heart valve thrombosis. World J Cardiol 9:196–199.  https://doi.org/10.4330/wjc.v9.i2.196 CrossRefGoogle Scholar
  15. De Jaegere P et al (2016) Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv 9:508–512.  https://doi.org/10.1016/j.jcin.2016.01.003 CrossRefGoogle Scholar
  16. Dvir D et al (2012) Multicenter evaluation of Edwards SAPIEN positioning during transcatheter aortic valve implantation with correlates for device movement during final deployment. JACC Cardiovasc Interv 5:563–570.  https://doi.org/10.1016/j.jcin.2012.03.005 CrossRefGoogle Scholar
  17. Eggebrecht H, Doss M, Schmermund A, Nowak B, Krissel J, Voigtländer T (2012) Interventional options for severe aortic regurgitation after transcatheter aortic valve implantation: balloons, snares, valve-in-valve. Clin Res Cardiol 101:503–507.  https://doi.org/10.1007/s00392-012-0434-4 CrossRefGoogle Scholar
  18. Genereux P et al (2013) Paravalvular leak after transcatheter aortic valve replacement: the new Achilles’ heel? A comprehensive review of the literature. J Am Coll Cardiol 61:1125–1136.  https://doi.org/10.1016/j.jacc.2012.08.1039 CrossRefGoogle Scholar
  19. Gilbert ON et al (2018) Comparison of paravalvular aortic leak characteristics in the Medtronic CoreValve versus Edwards Sapien Valve: Paravalvular aortic leak characteristics. Catheter Cardiovasc Interv.  https://doi.org/10.1002/ccd.27643 Google Scholar
  20. Girdhar G et al (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One 7:e32463CrossRefGoogle Scholar
  21. Haj-Ali R, Marom G, Ben Zekry S, Rosenfeld M, Raanani E (2012) A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J Biomech 45:2392–2397.  https://doi.org/10.1016/j.jbiomech.2012.07.017 CrossRefGoogle Scholar
  22. Hatoum H, Yousefi A, Lilly S, Maureira P, Crestanello J, Dasi LP (2018) An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J Thorac Cardiovasc Surg 1:1.  https://doi.org/10.1016/j.jtcvs.2018.05.042 Google Scholar
  23. Kanwar A, Thaden JJ, Nkomo VT (2018) Management of patients with aortic valve stenosis. Mayo Clin Proc 93:488–508.  https://doi.org/10.1016/j.mayocp.2018.01.020 CrossRefGoogle Scholar
  24. Kodali SK et al (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366:1686–1695CrossRefGoogle Scholar
  25. Leon MB et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. New Engl J Med.  https://doi.org/10.1056/nejmoa1514616 Google Scholar
  26. Maisano F, Taramasso M, Nietlispach F (2015) Prognostic influence of paravalvular leak following TAVI: is aortic regurgitation an active incremental risk factor or just a mere indicator? Eur Heart J 36:413–415.  https://doi.org/10.1093/eurheartj/ehu410 CrossRefGoogle Scholar
  27. Mao W, Wang Q, Kodali S, Sun W (2018) Numerical parametric study of paravalvular leak following a transcatheter aortic valve deployment into a patient-specific aortic root. J Biomech Eng 140:101007.  https://doi.org/10.1115/1.4040457 CrossRefGoogle Scholar
  28. Marom G, Bluestein D (2016) Lagrangian methods for blood damage estimation in cardiovascular devices–How numerical implementation affects the results. Expert Rev Med Devices 13:113–122.  https://doi.org/10.1586/17434440.2016.1133283 CrossRefGoogle Scholar
  29. Martin C, Sun W (2012) Biomechanical characterization of aortic valve tissue in humans and common animal models. J Biomed Mater Res Part A 100:1591–1599.  https://doi.org/10.1002/jbm.a.34099 CrossRefGoogle Scholar
  30. Martin C, Sun W (2015) Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J Biomech 48:3026–3034.  https://doi.org/10.1016/j.jbiomech.2015.07.031 CrossRefGoogle Scholar
  31. Martin C, Pham T, Sun W (2011) Significant differences in the material properties between aged human and porcine aortic tissues. Eur J Cardio-Thor Surg 40:28–34.  https://doi.org/10.1016/j.ejcts.2010.08.056 CrossRefGoogle Scholar
  32. McGee OM, Gunning PS, McNamara A, McNamara LM (2018) The impact of implantation depth of the Lotus™ valve on mechanical stress in close proximity to the bundle of His. Biomech Model Mechanobiol 1:1.  https://doi.org/10.1007/s10237-018-1069-9 Google Scholar
  33. Mensel B et al (2014) MRI-based determination of reference values of thoracic aortic wall thickness in a general population. Eur Radiol 24:2038–2044.  https://doi.org/10.1007/s00330-014-3188-8 CrossRefGoogle Scholar
  34. Morganti S, Conti M, Aiello M, Valentini A, Mazzola A, Reali A, Auricchio F (2014) Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J Biomech 47:2547–2555.  https://doi.org/10.1016/j.jbiomech.2014.06.007 CrossRefGoogle Scholar
  35. Morganti S, Brambilla N, Petronio AS, Reali A, Bedogni F, Auricchio F (2016) Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J Biomech 49:2513–2519.  https://doi.org/10.1016/j.jbiomech.2015.10.048 CrossRefGoogle Scholar
  36. Mummert J, Sirois E, Sun W (2013) Quantification of biomechanical interaction of transcatheter aortic valve stent deployed in porcine and ovine hearts. Ann Biomed Eng 41:577–586.  https://doi.org/10.1007/s10439-012-0694-1 CrossRefGoogle Scholar
  37. Nombela-Franco L et al (2012) Predictive factors, efficacy, and safety of balloon post-dilation after transcatheter aortic valve implantation with a balloon-expandable valve. JACC Cardiovasc Interv 5:499–512.  https://doi.org/10.1016/j.jcin.2012.02.010 CrossRefGoogle Scholar
  38. Pappano A, Wier W (2013) Cardiovascular physiology. In: Mosby physiology monograph series. vol 6, 10th edn. Elsevier, Philadelphia, PA, p 304Google Scholar
  39. Pasic M, Unbehaun A, Buz S, Drews T, Hetzer R (2015) Annular rupture during transcatheter aortic valve replacement: classification, pathophysiology, diagnostics, treatment approaches, and prevention. JACC Cardiovasc Interv 8:1–9.  https://doi.org/10.1016/j.jcin.2014.07.020 CrossRefGoogle Scholar
  40. Petronio AS et al (2015) Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic CoreValve system. JACC Cardiovasc Interv 8:837–846.  https://doi.org/10.1016/j.jcin.2015.02.005 CrossRefGoogle Scholar
  41. Pibarot P, Hahn RT, Weissman NJ, Monaghan MJ (2015) Assessment of paravalvular regurgitation following TAVR: a proposal of unifying grading scheme. JACC Cardiovasc Imag 8:340–360.  https://doi.org/10.1016/j.jcmg.2015.01.008 CrossRefGoogle Scholar
  42. Pilgrim T, Windecker S (2015) Transcatheter aortic valve replacement: lessons gained from extreme-risk patients. J Am Coll Cardiol 66:1335–1338.  https://doi.org/10.1016/j.jacc.2015.04.085 CrossRefGoogle Scholar
  43. Ribeiro HB et al (2013) Coronary obstruction following transcatheter aortic valve implantation: a systematic review. JACC Cardiovasc Interv 6:452–461.  https://doi.org/10.1016/j.jcin.2012.11.014 CrossRefGoogle Scholar
  44. Schultz C et al (2016) Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. EuroIntervention 11:1044–1052.  https://doi.org/10.4244/eijv11i9a212 CrossRefGoogle Scholar
  45. Scotten LN, Siegel R (2014) Thrombogenic potential of transcatheter aortic valve implantation with trivial paravalvular leakage. Ann Transl Med 2:43.  https://doi.org/10.3978/j.issn.2305-5839.2014.05.04 Google Scholar
  46. Smith RG, Leon MB, Mack MJ, Miller CD (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. New Engl J Med 364:2187–2198CrossRefGoogle Scholar
  47. Still S, Szerlip M, Mack M (2018) TAVR Vs. SAVR in intermediate-risk patients: what influences our choice of therapy. Curr Cardiol Rep 20:82.  https://doi.org/10.1007/s11886-018-1026-3 CrossRefGoogle Scholar
  48. Sturla F et al (2016) Impact of different aortic valve calcification patterns on the outcome of Transcatheter Aortic Valve Implantation: a finite element study. Journal of biomechanics 1:1.  https://doi.org/10.1016/j.jbiomech.2016.03.036 Google Scholar
  49. Takagi K et al (2011) Predictors of moderate-to-severe paravalvular aortic regurgitation immediately after CoreValve implantation and the impact of postdilatation. Catheter Cardiovasc Interve 78:432–443.  https://doi.org/10.1002/ccd.23003 Google Scholar
  50. Tzamtzis S, Viquerat J, Yap J, Mullen MJ, Burriesci G (2013) Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys 35:125–130.  https://doi.org/10.1016/j.medengphy.2012.04.009 CrossRefGoogle Scholar
  51. Vahidkhah K, Azadani AN (2017) Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J Biomech 58:114–122.  https://doi.org/10.1016/j.jbiomech.2017.04.020 CrossRefGoogle Scholar
  52. Van der Boon RM et al (2012) New conduction abnormalities after TAVI—frequency and causes. Nat Rev Cardiol 9:454–463CrossRefGoogle Scholar
  53. Wang Q, Kodali S, Primiano C, Sun W (2014) Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech Model Mechanobiol 14:29–38.  https://doi.org/10.1007/s10237-014-0583-7 CrossRefGoogle Scholar
  54. Webb JG et al (2009) Transcatheter aortic valve implantation—impact on clinical and valve-related outcomes. Circ J 119:3009–3016.  https://doi.org/10.1161/circulationaha.108.837807 CrossRefGoogle Scholar
  55. Xenos M, Girdhar G, Alemu Y, Jesty J, Slepian MJ, Einav S, Bluestein D (2010) Device Thrombogenicity Emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J Biomech 43:2400–2409CrossRefGoogle Scholar
  56. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128.  https://doi.org/10.1016/j.neuroimage.2006.01.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matteo Bianchi
    • 1
  • Gil Marom
    • 1
    • 2
  • Ram P. Ghosh
    • 1
  • Oren M. Rotman
    • 1
  • Puja Parikh
    • 3
  • Luis Gruberg
    • 4
  • Danny Bluestein
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Division of Cardiovascular DiseasesStony Brook University HospitalStony BrookUSA
  4. 4.Division of Cardiology, Southside HospitalNorthwell HealthBay ShoreUSA

Personalised recommendations