Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 2, pp 425–433 | Cite as

Flow plate separation of cells based on elastic properties: a computational study

  • Matthew Becton
  • Rodney D. Averett
  • Xianqiao WangEmail author
Original Paper
  • 75 Downloads

Abstract

Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody-binding affinity, among others. We propose a method of separating cells which have similar size and outer coatings, but which differ in their elastic properties. Such a method would be useful in detecting cancerous cells, which may have similar properties to leukocytes or erythrocytes but differ in their stiffness and deformation response. Here, we use coarse-grained model of a cell with membrane, cytoskeleton, and inner fluid to determine how small changes in the cell stiffness may be used to quickly and efficiently separate out irregular cells such as circulating tumor cells from a sample of blood. We focus specifically on the effects of volumetric flux and plate geometry on the ability of a separation plate to differentiate cells of similar but disparate stiffnesses. We show that volumetric flux is crucial in determining the stiffness cutoff for separating out cells of similar sizes, while the angle of the separation plate plays a less important role. With this work, we provide a comprehensive approach to the design factors of cell separation via elastic properties and hope to offer a guideline for the development of novel cytometry devices for the detection of irregular cells such as circulating tumor cells.

Keywords

Cell modeling Cell separation Cytometry Simulation Coarse grain 

Notes

Acknowledgements

The authors acknowledge support from the National Science Foundation and University of Georgia (UGA) start-up fund. The facility support for modeling and simulations from the UGA Advanced Computing Resource Center is greatly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

10237_2018_1093_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3363 kb)

References

  1. Alizadeh A, Dadvand A (2018) Effects of deformability of RBCs on their dynamics and blood flow passing through a stenosed microvessel: an immersed boundary-lattice Boltzmann approach. Theor Comp Fluid Dyn 32(1):91–107CrossRefGoogle Scholar
  2. Aznavoorian S, Stetler-Stevenson WG (1993) Molecular aspects of tumor cell invasion and metastasis. Cancer 71(4):1368–1383CrossRefGoogle Scholar
  3. Balogh P, Bagchi P (2017) A computational approach to modeling cellular-scale blood flow in complex geometry. J Comput Phys 334:280–307.  https://doi.org/10.1016/j.jcp.2017.01.007 MathSciNetCrossRefGoogle Scholar
  4. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12(10):1753–1767.  https://doi.org/10.1039/c2lc21273k CrossRefGoogle Scholar
  5. Chen C, Zhu S, Wang S, Zhang W, Cheng Y, Yan X (2017) Multiparameter quantification of liposomal nanomedicines at the single-particle level by high-sensitivity flow cytometry. ACS Appl Mater Interfaces 9(16):13913–13919.  https://doi.org/10.1021/acsami.7b01867 CrossRefGoogle Scholar
  6. Choi YE, Kwak JW, Park JW (2010) Nanotechnology for early cancer detection. Sensors (Basel) 10(1):428–455.  https://doi.org/10.3390/s100100428 CrossRefGoogle Scholar
  7. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784.  https://doi.org/10.1073/pnas.0605967103 CrossRefGoogle Scholar
  8. de la Rica R, Thompson S, Baldi A, Fernandez-Sanchez C, Drain CM, Matsui H (2009) Label-free cancer cell detection with impedimetric transducers. Anal Chem 81(24):10167–10171.  https://doi.org/10.1021/ac9021049 CrossRefGoogle Scholar
  9. Dou X, Li P, Jiang S, Bayat H, Schonherr H (2017) Bioinspired hierarchically structured surfaces for efficient capture and release of circulating tumor cells. ACS Appl Mater Interfaces 9(10):8508–8518.  https://doi.org/10.1021/acsami.6b16202 CrossRefGoogle Scholar
  10. Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA 109(51):20808–20813CrossRefGoogle Scholar
  11. Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, Henslee EA, Labeed FH, Hughes MP (2017) High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc Natl Acad Sci USA 114(18):4591–4596.  https://doi.org/10.1073/pnas.1700773114 CrossRefGoogle Scholar
  12. Fu SP, Peng Z, Yuan H, Kfoury R, Young YN (2017) Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS. Comput Phys Commun 210:193–203.  https://doi.org/10.1016/j.cpc.2016.09.018 CrossRefGoogle Scholar
  13. Grady ME, Composto RJ, Eckmann DM (2016) Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed 61:197–207CrossRefGoogle Scholar
  14. Guo Q, McFaul SM, Ma H (2011) Deterministic microfluidic ratchet based on the deformation of individual cells. Phys Rev E Stat Nonlinear Soft Matter Phys 83(5 Pt 1):051910.  https://doi.org/10.1103/PhysRevE.83.051910 CrossRefGoogle Scholar
  15. Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H (2014) Microfluidic analysis of red blood cell deformability. J Biomech 47(8):1767–1776.  https://doi.org/10.1016/j.jbiomech.2014.03.038 CrossRefGoogle Scholar
  16. Guo Q, Duffy SP, Matthews K, Deng X, Santoso AT, Islamzada E, Ma H (2016) Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum. Lab Chip 16(4):645–654.  https://doi.org/10.1039/c5lc01248a CrossRefGoogle Scholar
  17. Henry E, Holm SH, Zhang Z, Beech JP, Tegenfeldt JO, Fedosov DA, Gompper G (2016) Sorting cells by their dynamical properties. Sci Rep 6:34375.  https://doi.org/10.1038/srep34375 CrossRefGoogle Scholar
  18. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176.  https://doi.org/10.1016/j.ccr.2005.08.009 CrossRefGoogle Scholar
  19. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990.  https://doi.org/10.1126/science.1094567 CrossRefGoogle Scholar
  20. King MR, Phillips KG, Mitrugno A, Lee TR, de Guillebon AME, Chandrasekaran S, McGuire MJ, Carr RT, Baker-Groberg SM, Rigg RA, Kolatkar A, Luttgen M, Bethel K, Kuhn P, Decuzzi P, McCarty OJT (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol-Cell Physiol 308(10):C792–C802CrossRefGoogle Scholar
  21. Kwan JM, Guo Q, Kyluik-Price DL, Ma H, Scott MD (2013) Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. Am J Hematol 88(8):682–689.  https://doi.org/10.1002/ajh.23476 CrossRefGoogle Scholar
  22. Lekka M, Gil D, Pogoda K, Dulinska-Litewka J, Jach R, Gostek J, Klymenko O, Prauzner-Bechcicki S, Stachura Z, Wiltowska-Zuber J, Okon K, Laidler P (2012) Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 518(2):151–156.  https://doi.org/10.1016/j.abb.2011.12.013 CrossRefGoogle Scholar
  23. Li X, Dao M, Lykotrafitis G, Karniadakis GE (2017) Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 50:34–41.  https://doi.org/10.1016/j.jbiomech.2016.11.022 CrossRefGoogle Scholar
  24. Lin BK, McFaul SM, Jin C, Black PC, Ma H (2013) Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator. Biomicrofluidics 7(3):34114.  https://doi.org/10.1063/1.4812688 CrossRefGoogle Scholar
  25. Mancuso JE, Ristenpart WD (2017) Stretching of red blood cells at high strain rates. Phys Rev Fluids 2(10):101101CrossRefGoogle Scholar
  26. Park MH, Reategui E, Li W, Tessier SN, Wong KH, Jensen AE, Thapar V, Ting D, Toner M, Stott SL, Hammond PT (2017) Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc 139(7):2741–2749.  https://doi.org/10.1021/jacs.6b12236 CrossRefGoogle Scholar
  27. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254.  https://doi.org/10.1016/j.ccr.2005.08.010 CrossRefGoogle Scholar
  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19.  https://doi.org/10.1006/jcph.1995.1039 CrossRefzbMATHGoogle Scholar
  29. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765.  https://doi.org/10.1038/nnano.2012.167 CrossRefGoogle Scholar
  30. Qin X, Park S, Duffy SP, Matthews K, Ang RR, Todenhofer T, Abdi H, Azad A, Bazov J, Chi KN, Black PC, Ma H (2015) Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab Chip 15(10):2278–2286.  https://doi.org/10.1039/c5lc00226e CrossRefGoogle Scholar
  31. Todenhofer T, Park ES, Duffy S, Deng X, Jin C, Abdi H, Ma H, Black PC (2016) Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. Urol Oncol 34(11):483e9–483e16.  https://doi.org/10.1016/j.urolonc.2016.06.004 CrossRefGoogle Scholar
  32. Wang G, Crawford K, Turbyfield C, Lam W, Alexeev A, Sulchek T (2015) Microfluidic cellular enrichment and separation through differences in viscoelastic deformation. Lab Chip 15(2):532–540.  https://doi.org/10.1039/c4lc01150c CrossRefGoogle Scholar
  33. Wang W, Cui H, Zhang P, Meng J, Zhang F, Wang S (2017) Efficient capture of cancer cells by their replicated surfaces reveals multiscale topographic interactions coupled with molecular recognition. ACS Appl Mater Interfaces 9(12):10537–10543.  https://doi.org/10.1021/acsami.7b01147 CrossRefGoogle Scholar
  34. Xiao LL, Liu Y, Chen S, Fu BM (2017) Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 16(2):597–610CrossRefGoogle Scholar
  35. Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7(10):e46609.  https://doi.org/10.1371/journal.pone.0046609 CrossRefGoogle Scholar
  36. Yuan HY, Huang CJ, Li J, Lykotrafitis G, Zhang SL (2010) One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Phys Rev E 82(1):011905.  https://doi.org/10.1103/PhysRevE.82.011905 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations