Advertisement

The application of finite element modelling based on clinical pQCT for classification of fracture status

  • Dale L. Robinson
  • Hongyuan Jiang
  • Qichun Song
  • Christopher Yates
  • Peter Vee Sin Lee
  • John D. Wark
Original Paper
  • 126 Downloads

Abstract

Fracture risk assessment using dual-energy X-ray absorptiometry (DXA) frequently fails to diagnose osteoporosis amongst individuals who later experience fragility fractures. Hence, more reliable techniques that improve the prediction of fracture risk are needed. In this study, we evaluated a finite element (FE) modelling framework based on clinical peripheral quantitative computed tomography (pQCT) imaging of the tibial epiphysis and diaphysis to predict the stiffness at these locations in compression, shear, torsion and bending. The ability of these properties to identify a group of women who had recently sustained a low-trauma fracture from an age- and weight-matched control group was determined and compared to clinical pQCT and DXA properties and structural properties based on composite beam theory. The predicted stiffnesses derived from the FE models and composite beam theory were significantly different (p < 0.05) between the control and fracture groups, whereas no meaningful differences were observed using DXA and for the stress–strain indices (SSIs) derived using pQCT. The diagnostic performance of each property was assessed by the odds ratio (OR) and the area under the receiver operating curve (AUC), and both were greatest for the FE-predicted shear stiffness (OR 16.09, 95% CI 2.52–102.56, p = 0.003) (AUC: 0.80, 95% CI 0.67–0.93). The clinical pQCT variable total density (ρtot) and a number of structural and FE-predicted variables had a similar probability of correct classification between the control and fracture groups (i.e. ORs and AUCs with mean values greater than 5.00 and 0.80, respectively). In general, the diagnostic characteristics were lower for variables derived using DXA and for the SSIs (i.e. ORs and AUCs with mean values of 1.65–2.98 and 0.64–0.71, respectively). For all properties considered, the trabecular-dominant tibial epiphysis exhibited enhanced classification characteristics, as compared to the cortical-dominant tibial diaphysis. The results of this study demonstrate that bone properties may be derived using FE modelling that have the potential to enhance fracture risk assessment using conventional pQCT or DXA instruments in clinical settings.

Keywords

pQCT FE modelling Fracture status Bone strength 

Notes

Acknowledgements

We thank all participants for consenting to provide their pQCT tibia scan data for this study. We duly acknowledge Ashwini Kale for diligently performing all pQCT scans, Richard Farrugia for facilitating patient recruitment and clinic coordination activities and Associate Professor Andrew Bucknill for his strong support of the Royal Melbourne Hospital fracture liaison service. This work was supported by a collaborative PhD scholarship provided by the University of Melbourne and the China Scholarship Council to HJ.

Supplementary material

10237_2018_1079_MOESM1_ESM.pdf (141 kb)
Supplementary material 1 (PDF 140 kb)
10237_2018_1079_MOESM2_ESM.pdf (70 kb)
Supplementary material 2 (PDF 69 kb)
10237_2018_1079_MOESM3_ESM.pdf (176 kb)
Supplementary material 3 (PDF 176 kb)

References

  1. Amin S, Kopperdhal DL, Melton LJ, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S (2011) Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res 26(7):1593–1600CrossRefGoogle Scholar
  2. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(S3):13–18CrossRefGoogle Scholar
  3. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12(4):683–690CrossRefGoogle Scholar
  4. Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of PQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17(8):1241–1251CrossRefGoogle Scholar
  5. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-PQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23(3):392–399CrossRefGoogle Scholar
  6. Briggs AM, Perilli E, Parkinson IH, Wrigley TV, Fazzalari NL, Kantor S, Wark JD (2010) Novel assessment of subregional bone mineral density using DXA and PQCT and subregional microarchitecture using micro-CT in whole human vertebrae: applications, methods, and correspondence between technologies. J Clin Densitom 13(2):161–174CrossRefGoogle Scholar
  7. Cummings SR, Melton LJ (2002) Osteoporosis I: epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767CrossRefGoogle Scholar
  8. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288(15):1889–1897CrossRefGoogle Scholar
  9. Doube M, Kłosowski M, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079CrossRefGoogle Scholar
  10. Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S (2011) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39(2):742–755CrossRefGoogle Scholar
  11. Duckham RL, Frank AW, Johnston JD, Olszynski WP, Kontulainen SA (2013) Monitoring time interval for PQCT-derived bone outcomes in postmenopausal women. Osteoporos Int 24(6):1917–1922CrossRefGoogle Scholar
  12. Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S (2014) Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 29(2):479–486CrossRefGoogle Scholar
  13. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11(1):123–162CrossRefGoogle Scholar
  14. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227CrossRefGoogle Scholar
  15. Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones ADG (2012) Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res 27(11):2298–2305CrossRefGoogle Scholar
  16. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86(3):498–504CrossRefGoogle Scholar
  17. Hansen MA, Overgaard K, Christiansen C (1995) Spontaneous postmenopausal bone loss in different skeletal areas—followed up for 15 years. J Bone Miner Res 10(2):205–210CrossRefGoogle Scholar
  18. Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7):883–893CrossRefGoogle Scholar
  19. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical PQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21(4):543–548CrossRefGoogle Scholar
  20. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733CrossRefGoogle Scholar
  21. Kanis JA (2002) Osteoporosis III: diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936CrossRefGoogle Scholar
  22. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, Van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046CrossRefGoogle Scholar
  23. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57CrossRefGoogle Scholar
  24. Kawalilak CE, Kontulainen SA, Amini MA, Lanovaz JL, Olszynski WP, Johnston JD (2016) In vivo precision of three HR-PQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC Musculoskelet Disord 17(1):1–11CrossRefGoogle Scholar
  25. Keyak JH, Rossi SA, Jones KA, Skinner HB (1997) Prediction of femoral fracture load using automated finite element modelling. J Biomech 31(2):125–133CrossRefGoogle Scholar
  26. Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50(4):824–829CrossRefGoogle Scholar
  27. Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from PQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact 8(4):401–409Google Scholar
  28. Kourtis LC, Carter DR, Kesari H, Beaupre GS (2008) A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties. Comput Methods Biomech Biomed Eng 11(5):463–476CrossRefGoogle Scholar
  29. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173CrossRefGoogle Scholar
  30. Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain 8(6):221–223CrossRefGoogle Scholar
  31. Li N, Li X, Xu L, Sun W, Cheng X, Tian W (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol.  https://doi.org/10.1155/2013/895474 CrossRefGoogle Scholar
  32. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE (2010) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25(4):746–756Google Scholar
  33. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J et al (2012) Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-PQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res 27(2):263–272CrossRefGoogle Scholar
  34. Lochmüller E-M, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17(9):1629–1638CrossRefGoogle Scholar
  35. McLellan AR, Gallacher SJ, Fraser M, McQuillian C (2003) The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int 14(12):1028–1034CrossRefGoogle Scholar
  36. Melton LJ, Christen D, Riggs BL, Achenbach SJ, Müller R, Van Lenthe GH, Amin S, Atkinson EJ, Khosla S (2010) Assessing forearm fracture risk in postmenopausal women. Osteoporos Int 21(7):1161–1169CrossRefGoogle Scholar
  37. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36(7):897–904CrossRefGoogle Scholar
  38. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14(4):345–352CrossRefGoogle Scholar
  39. Nazrun AS, Tzar MN, Mokhtar SA, Mohamed IN (2014) A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: morbidity, subsequent fractures, and mortality. Ther Clin Risk Manag 10:937–948Google Scholar
  40. Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-PQCT. Curr Osteoporos Rep 11(2):147–155CrossRefGoogle Scholar
  41. Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK (2013) Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-PQCT. Osteoporos Int 24(5):1733–1740CrossRefGoogle Scholar
  42. Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848CrossRefGoogle Scholar
  43. Premaor MO, Pilbrow L, Tonkin C, Adams M, Parker RA, Compston J (2009) Low rates of treatment in postmenopausal women with a history of low trauma fractures: results of audit in a fracture liaison service. QJM 103(1):33–40CrossRefGoogle Scholar
  44. Rinaldi G, Wisniewski CA, Setty NG, LeBoff MS (2011) Peripheral quantitative computed tomography: optimization of reproducibility measures of bone density, geometry, and strength at the radius and tibia. J Clin Densitom 14(3):367–373CrossRefGoogle Scholar
  45. Ringle CM, Wende S, Becker J-M (2015) SmartPLS 3. Boenningstedt SmartPLS GmbH. www.smartpls.com. Accessed 9 July 2018
  46. Rohlmann A, Pohl D, Bender A, Graichen F, Dymke J, Schmidt H, Bergmann G (2014) Activities of everyday life with high spinal loads. PLoS ONE 9(5):1–10CrossRefGoogle Scholar
  47. Sattui SE, Saag KG (2014) Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol 10(10):592–602CrossRefGoogle Scholar
  48. Schuit SC, van der Klift M, Weel AEA, de Laet CED, Burger H, Seeman E, Hofman A, Uitterlinden A, van Leeuwen JPT, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34(1):195–202CrossRefGoogle Scholar
  49. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261CrossRefGoogle Scholar
  50. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the national osteoporosis risk assessment. JAMA 286(22):2815–2822CrossRefGoogle Scholar
  51. Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC (2006) Predicting fracture through Benign skeletal lesions with quantitative computed tomography. J Bone Jt Surg 88–A(1):55–70Google Scholar
  52. Snyder BD, Cordio MA, Nazarian A, Kwak SD, Chang DJ, Entezari V, Zurakowski D, Parker LM (2009) Noninvasive prediction of fracture risk in patients with metastatic cancer to the spine. Clin Cancer Res 15(24):7676–7683CrossRefGoogle Scholar
  53. Stone KL, Seeley DG, Lui L-Y, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Min. Res 18(11):1947–1954CrossRefGoogle Scholar
  54. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological Measures of trabecular bone structure: comparison of 3D micro computed tomography with 2d histological sections in human proximal tibial bone biopsies. J Microsc 218(2):171–179MathSciNetCrossRefGoogle Scholar
  55. Varga P, Baumbach S, Pahr D, Zysset PK (2009) Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech 42(11):1726–1731CrossRefGoogle Scholar
  56. Vilayphiou N, Boutroy S, Szulc P, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-PQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973CrossRefGoogle Scholar
  57. Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD (2000) Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am 82(9):1240–1251CrossRefGoogle Scholar
  58. Yang PF, Sanno M, Ganse B, Koy T, Brüggemann GP, Müller LP, Rittweger J (2014) Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS ONE 9(4):e94525CrossRefGoogle Scholar
  59. Yates CJ, Chauchard MA, Liew D, Bucknill A, Wark JD (2015) Bridging the osteoporosis treatment gap: performance and cost-effectiveness of a fracture liaison service. J Clin Densitom 18(2):150–156CrossRefGoogle Scholar
  60. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35CrossRefGoogle Scholar
  61. Zysset PK, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. Bonekey Rep 2(AUGUST):1–9Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dale L. Robinson
    • 1
  • Hongyuan Jiang
    • 2
  • Qichun Song
    • 2
    • 3
  • Christopher Yates
    • 4
  • Peter Vee Sin Lee
    • 1
  • John D. Wark
    • 2
    • 5
  1. 1.Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
  2. 2.Department of MedicineRoyal Melbourne Hospital, University of MelbourneMelbourneAustralia
  3. 3.Department of Orthopaedics, 2nd Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of Diabetes and EndocrinologyRoyal Melbourne HospitalMelbourneAustralia
  5. 5.Bone and Mineral MedicineRoyal Melbourne HospitalMelbourneAustralia

Personalised recommendations