Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 5, pp 1471–1480 | Cite as

A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface

  • Marzieh Ovesy
  • Benjamin Voumard
  • Philippe Zysset
Original Paper
  • 252 Downloads

Abstract

Stability of an implant is defined by its ability to undergo physiological loading–unloading cycles without showing excessive tissue damage and micromotions at the interface. Distinction is usually made between the immediate primary stability and the long-term, secondary stability resulting from the biological healing process. The aim of this research is to numerically investigate the effect of initial implantation press-fit, bone yielding, densification and friction at the interface on the primary stability of a simple bone–implant system subjected to loading–unloading cycles. In order to achieve this goal, human trabecular bone was modeled as a continuous, elasto-plastic tissue with damage and densification, which material constants depend on bone volume fraction and fabric. Implantation press-fit related damage in the bone was simulated by expanding the drilled hole to the outer contour of the implant. The bone–implant interface was then modeled with unilateral contact with friction. The implant was modeled as a rigid body and was subjected to increasing off-axis loading cycles. This modeling approach is able to capture the experimentally observed primary stability in terms of initial stiffness, ultimate force and progression of damage. In addition, it is able to quantify the micromotions around the implant relevant for bone healing and osseointegration. In conclusion, the computationally efficient modeling approach used in this study provides a realistic structural response of the bone–implant interface and represents a powerful tool to explore implant design, implantation press-fit and the resulting risk of implant failure under physiological loading.

Keywords

Bone–implant interface Primary stability Finite element modeling Damage Contact Press-fit Friction 

Notes

Acknowledgements

The authors gratefully acknowledge RMS for their financial support Grant No. E16_0001 HOM-FEM and Nobel Biocare for supporting the realization of the experiments.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41(3):587–594.  https://doi.org/10.1016/j.jbiomech.2007.10.009 CrossRefGoogle Scholar
  2. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G (2008) The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 100(6):422–431.  https://doi.org/10.1016/S0022-3913(08)60259-0 CrossRefGoogle Scholar
  3. Basler SE, Traxler J, Müller R, van Lenthe GH (2013) Peri-implant bone microstructure determines dynamic implant cut-out. Med Eng Phys 35(10):1442–1449.  https://doi.org/10.1016/j.medengphy.2013.03.016 CrossRefGoogle Scholar
  4. Berahmani S, Janssen D, Verdonschot N (2017) Experimental and computational analysis of micromotions of an uncemented femoral knee implant using elastic and plastic bone material models. J Biomech 61:137–143.  https://doi.org/10.1016/j.jbiomech.2017.07.023 CrossRefGoogle Scholar
  5. Chappuis V, Engel O, Reyes M, Shahim K, Nolte LP, Buser D (2013) Ridge alterations post-extraction in the esthetic zone. J Dent Res 92(12-suppl):195S–201S.  https://doi.org/10.1177/0022034513506713 CrossRefGoogle Scholar
  6. Charlebois M, Jirásek M, Zysset PK (2010) A nonlocal constitutive model for trabecular bone softening in compression. Biomech Model Mechanobiol 9(5):597–611CrossRefGoogle Scholar
  7. Chong DYR, Hansen UN, Amis AA (2010) Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. J Biomech 43(6):1074–1080.  https://doi.org/10.1016/j.jbiomech.2009.12.006 CrossRefGoogle Scholar
  8. Conlisk N, Gray H, Pankaj P, Howie CR (2012) The influence of stem length and fixation on initial femoral component stability in revision total knee replacement. Bone Joint Res 1(11):281–8.  https://doi.org/10.1302/2046-3758.111.2000107 CrossRefGoogle Scholar
  9. Dorogoy A, Rittel D, Shemtov-Yona K, Korabi R (2017) Modeling dental implant insertion. J Mech Behav Biomed Mater 68(January):42–50.  https://doi.org/10.1016/j.jmbbm.2017.01.021 CrossRefGoogle Scholar
  10. Du J, Lee JH, Jang AT, Gu A, Hossaini-Zadeh M, Prevost R, Curtis DA, Ho SP (2015) Biomechanics and strain mapping in bone as related to immediately-loaded dental implants. J Biomech 48(12):3486–3494.  https://doi.org/10.1016/j.jbiomech.2015.05.014 CrossRefGoogle Scholar
  11. Dubov A, Kim SYR, Shah S, Schemitsch EH, Zdero R, Bougherara H (2011) The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position. Proc Inst Mech Eng 225(9):857–865CrossRefGoogle Scholar
  12. Fitzpatrick CK, Hemelaar P, Taylor M (2014) Computationally efficient prediction of bone-implant interface micromotion of a cementless tibial tray during gait. J Biomech 47(7):1718–1726.  https://doi.org/10.1016/j.jbiomech.2014.02.018 CrossRefGoogle Scholar
  13. Fouad H (2010) Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys 32(7):783–789.  https://doi.org/10.1016/j.medengphy.2010.05.003 CrossRefGoogle Scholar
  14. Gabet Y, Kohavi D, Voide R, Mueller TL, Müller R, Bab I (2010) Endosseous implant anchorage is critically dependent on mechanostructural determinants of peri-implant bone trabeculae. J Bone Miner Res 25(3):575–583.  https://doi.org/10.1359/jbmr.090808 CrossRefGoogle Scholar
  15. Gapski R, Wang HL, Mascarenhas P, Lang NP (2003) Critical review of immediate implant loading. Clin Oral Implant Res 14(5):515–527.  https://doi.org/10.1034/j.1600-0501.2003.00950.x CrossRefGoogle Scholar
  16. Gross T, Pahr DH, Zysset PK (2013) Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiol 12(4):793–800.  https://doi.org/10.1007/s10237-012-0443-2 CrossRefGoogle Scholar
  17. Haïat G, Hl Wang, Brunski J (2014) Effects of biomechanical properties of the bone implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng 16(1):187–213.  https://doi.org/10.1146/annurev-bioeng-071813-104854 CrossRefGoogle Scholar
  18. Hosseini HS, Pahr DH, Zysset PK (2012) Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains. J Mech Behav Biomed Mater 15:93–102CrossRefGoogle Scholar
  19. Hosseini HS, Clouthier AL, Zysset PK (2014) Experimental validation of finite element analysis of human vertebral collapse under large compressive strains. J Biomech Eng 136(4):41,006CrossRefGoogle Scholar
  20. Hosseini HS, Horák M, Zysset PK, Jirásek M (2015) An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains. Int J Numer Methods Biomed Eng 31(11):e02728MathSciNetCrossRefGoogle Scholar
  21. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW (2008) Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent 36(6):409–417.  https://doi.org/10.1016/j.jdent.2008.02.015 CrossRefGoogle Scholar
  22. Inzana JA, Varga P, Windolf M (2016) Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. J Biomech 49(9):1836–1844.  https://doi.org/10.1016/j.jbiomech.2016.04.021 CrossRefGoogle Scholar
  23. Karunratanakul K, Schrooten J, Van Oosterwyck H (2010) Finite element modelling of a unilateral fixator for bone reconstruction: importance of contact settings. Med Eng Phys 32(5):461–467.  https://doi.org/10.1016/j.medengphy.2010.03.005 CrossRefGoogle Scholar
  24. Kelly N, Cawley DT, Shannon FJ, Mcgarry JP (2013) Medical engineering & physics an investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty. Med Eng Phys 35(11):1599–1606.  https://doi.org/10.1016/j.medengphy.2013.05.007 CrossRefGoogle Scholar
  25. Kennedy J, Molony D, Burke NG, FitzPatrick D, Mullett H (2013) Effect of calcium triphosphate cement on proximal humeral fracture osteosynthesis: a cadaveric biomechanical study. J Orthop Surg 21(2):173–177.  https://doi.org/10.1177/230949901302100211 CrossRefGoogle Scholar
  26. Korabi R, Shemtov-Yona K, Rittel D (2017) On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res 19:935–943.  https://doi.org/10.1111/cid.12509 CrossRefGoogle Scholar
  27. Lioubavina-Hack N, Lang NP, Karring T (2006) Significance of primary stability for osseointegration of dental implants. Clin Oral Implant Res 17(3):244–250.  https://doi.org/10.1111/j.1600-0501.2005.01201.x CrossRefGoogle Scholar
  28. MacLeod AR, Pankaj P, Simpson AHR (2012) Does screw-bone interface modelling matter in finite element analyses? J Biomech 45(9):1712–1716.  https://doi.org/10.1016/j.jbiomech.2012.04.008 CrossRefGoogle Scholar
  29. Maldonado ZM, Seebeck J, Heller MOW, Brandt D, Hepp P, Lill H, Duda GN (2003) Straining of the intact and fractured proximal humerus under physiological-like loading. J Biomech 36(12):1865–1873CrossRefGoogle Scholar
  30. Meredith N (2008) A review of implant design, geometry and placement. Appl Osseointgrated Res 6:6–12Google Scholar
  31. Mueller TL, Basler SE, Müller R, Van Lenthe GH (2013) Time-lapsed imaging of implant fixation failure in human femoral heads. Med Eng Phys 35(5):636–643.  https://doi.org/10.1016/j.medengphy.2012.07.009 CrossRefGoogle Scholar
  32. Pankaj P (2013) Patient-specific modelling of bone and bone-implant systems: the challenges. Int J Numer Method Biomed Eng.  https://doi.org/10.1002/cnm.2536 MathSciNetCrossRefGoogle Scholar
  33. Panyasantisuk J, Pahr DH, Zysset PK (2016) Effect of boundary conditions on yield properties of human femoral trabecular bone. Biomech Model Mechanobiol 15(5):1043–1053.  https://doi.org/10.1007/s10237-015-0741-6 CrossRefGoogle Scholar
  34. Ruffoni D, Müller R, Van Lenthe GH (2012) Mechanisms of reduced implant stability in osteoporotic bone. Biomech Model Mechanobiol 11(3–4):313–323.  https://doi.org/10.1007/s10237-011-0312-4 CrossRefGoogle Scholar
  35. Schwiedrzik JJ, Wolfram U, Zysset PK (2013) A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol 12(6):1155–1168CrossRefGoogle Scholar
  36. Steiner JA, Ferguson SJ, van Lenthe GH (2015) Computational analysis of primary implant stability in trabecular bone. J Biomech 48(5):807–815.  https://doi.org/10.1016/j.jbiomech.2014.12.008 CrossRefGoogle Scholar
  37. Steiner JA, Ferguson SJ, van Lenthe GH (2016) Screw insertion in trabecular bone causes peri-implant bone damage. Med Eng Phys 38(4):417–422.  https://doi.org/10.1016/j.medengphy.2016.01.006 CrossRefGoogle Scholar
  38. Steiner JA, Christen P, Affentranger R, Ferguson SJ, van Lenthe GH (2017a) A novel in silico method to quantify primary stability of screws in trabecular bone. J Orthop Res.  https://doi.org/10.1002/jor.23551 CrossRefGoogle Scholar
  39. Steiner JA, Hofmann UA, Christen P, Favre JM, Ferguson SJ, van Lenthe GH (2017b) Patient-specific in silico models can quantify primary implant stability in elderly human bone. J Orthop Res.  https://doi.org/10.1002/jor.23721 CrossRefGoogle Scholar
  40. van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81.  https://doi.org/10.1016/0021-9290(95)80008-5 CrossRefGoogle Scholar
  41. Varga P, Grünwald L, Inzana JA, Windolf M (2017) Fatigue failure of plated osteoporotic proximal humerus fractures is predicted by the strain around the proximal screws. J Mech Behav Biomed Mater 75:68–74.  https://doi.org/10.1016/j.jmbbm.2017.07.004 CrossRefGoogle Scholar
  42. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 33(12):1611–1618.  https://doi.org/10.1016/S0021-9290(00)00140-8 CrossRefGoogle Scholar
  43. Wolfram U, Wilke HJ, Zysset PK (2011) Damage accumulation in vertebral trabecular bone depends on loading mode and direction. J Biomech 44(6):1164–1169.  https://doi.org/10.1016/j.jbiomech.2011.01.018 CrossRefGoogle Scholar
  44. Zhang QH, Tan SH, Chou SM (2004) Investigation of fixation screw pull-out strength on human spine. J Biomech 37(4):479–485.  https://doi.org/10.1016/j.jbiomech.2003.09.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland

Personalised recommendations