Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 5, pp 1357–1371 | Cite as

Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours

  • Mohd Almie Alias
  • Pascal R. Buenzli
Original Paper

Abstract

The geometric control of bone tissue growth plays a significant role in bone remodelling, age-related bone loss, and tissue engineering. However, how exactly geometry influences the behaviour of bone-forming cells remains elusive. Geometry modulates cell populations collectively through the evolving space available to the cells, but it may also modulate the individual behaviours of cells. To factor out the collective influence of geometry and gain access to the geometric regulation of individual cell behaviours, we develop a mathematical model of the infilling of cortical bone pores and use it with available experimental data on cortical infilling rates. Testing different possible modes of geometric controls of individual cell behaviours consistent with the experimental data, we find that efficient smoothing of irregular pores only occurs when cell secretory rate is controlled by porosity rather than curvature. This porosity control suggests the convergence of a large scale of intercellular signalling to single bone-forming cells, consistent with that provided by the osteocyte network in response to mechanical stimulus. After validating the mathematical model with the histological record of a real cortical pore infilling, we explore the infilling of a population of randomly generated initial pore shapes. We find that amongst all the geometric regulations considered, the collective influence of curvature on cell crowding is a dominant factor for how fast cortical bone pores infill, and we suggest that the irregularity of cement lines thereby explains some of the variability in double labelling data as well as the overall speed of osteon infilling.

Keywords

Bone remodelling Tissue growth Osteoblast Tissue engineering Morphogenesis 

Notes

Acknowledgements

We thank Prof. Matthew Simpson and Prof. Kevin Burrage for fruitful discussions, and the three anonymous reviewers for their suggestions. MAA is a recipient of the fellowship scheme from the Universiti Kebangsaan Malaysia, and the departmental scholarship from the School of Mathematical Sciences, Monash University, Australia. PRB gratefully acknowledges the Australian Research Council for Discovery Early Career Research Fellowship (Project No. DE130101191).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alias MA, Buenzli PR (2017) Modeling the effect of curvature on the collective behavior of cells growing new tissue. Biophys J 112(1):193–204.  https://doi.org/10.1016/j.bpj.2016.11.3203 CrossRefGoogle Scholar
  2. Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JP, Ding M, Andersen TL (2018) Understanding age-induced cortical porosity in women: taccumulation and coalescence of eroded cavities upon existing intracortical canals is the main contributor. J Bone Miner Res 33(4):606–620.  https://doi.org/10.1002/jbmr.3354 CrossRefGoogle Scholar
  3. Bell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG (2001) Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264(4):378–386.  https://doi.org/10.1002/ar.10014 CrossRefGoogle Scholar
  4. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Bréchet YJM, Fratzl P, Dunlop JWC (2012) How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7(e36):336.  https://doi.org/10.1371/journal.pone.0036336 CrossRefGoogle Scholar
  5. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JWC (2013a) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2(1):186–194.  https://doi.org/10.1002/adhm.201200159 CrossRefGoogle Scholar
  6. Bidan CM, Wang FM, Dunlop JW (2013b) A three-dimensional model for tissue deposition on complex surfaces. Comput Methods Biomech Biomed Eng 16(10):1056–1070.  https://doi.org/10.1080/10255842.2013.774384 CrossRefGoogle Scholar
  7. Bidan CM, Kollmannsberger P, Gering V, Ehrig S, Joly P, Petersen A, Vogel V, Fratzl P, Dunlop JWC (2016) Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth. J R Soc Interface 13(20160):136.  https://doi.org/10.1098/rsif.2016.0136 CrossRefGoogle Scholar
  8. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238.  https://doi.org/10.1002/jbmr.320 CrossRefGoogle Scholar
  9. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615.  https://doi.org/10.1016/j.bone.2007.12.224 CrossRefGoogle Scholar
  10. Britz HM, Thomas CDL, Clement JG, Cooper DM (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45(1):77–83.  https://doi.org/10.1016/j.bone.2009.03.654 CrossRefGoogle Scholar
  11. Buckberry J, Chamberlain A (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119(3):231–239.  https://doi.org/10.1002/ajpa.10130 CrossRefGoogle Scholar
  12. Buenzli PR (2015) Osteocytes as a record of bone formation dynamics: a mathematical model of osteocyte generation in bone matrix. J Theor Biol 364:418–427.  https://doi.org/10.1016/j.jtbi.2014.09.028 CrossRefGoogle Scholar
  13. Buenzli PR (2016) Governing equations of tissue modelling and remodelling: a unified generalised description of surface and bulk balance. PLoS ONE 11(4):1–25.  https://doi.org/10.1371/journal.pone.0152582 CrossRefGoogle Scholar
  14. Buenzli PR, Sims NA (2015) Quantifying the osteocyte network in the human skeleton. Bone 75:144–150.  https://doi.org/10.1016/j.bone.2015.02.016 CrossRefGoogle Scholar
  15. Buenzli PR, Pivonka P, Smith D (2011) Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone 48(4):918–926.  https://doi.org/10.1016/j.bone.2010.12.009 CrossRefGoogle Scholar
  16. Buenzli PR, Pivonka P, Gardiner BS, Smith DW (2012) Modelling the anabolic response of bone using a cell population model. J Theor Biol 307(Supplement C):42–52.  https://doi.org/10.1016/j.jtbi.2012.04.019 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Buenzli PR, Pivonka P, Thomas C, Clement J (2013) Endocortical bone loss in osteoporosis: the role of bone surface availability. Int J Num Meth Biomed Eng 29:1307–1322.  https://doi.org/10.1002/cnm.2567 CrossRefGoogle Scholar
  18. Buenzli PR, Pivonka P, Smith D (2014) Bone refilling in cortical basic multicellular units: insights into tetracycline double labelling from a computational model. Biomech Model Mechanobiol 13(1):185–203.  https://doi.org/10.1007/s10237-013-0495-y CrossRefGoogle Scholar
  19. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J 13(9001):101–112CrossRefGoogle Scholar
  20. Burr DB, Akkus O (2014) Chapter 1: Bone morphology and organization. In: Burr DB, Allen MR (eds) Basic and applied bone biology. Academic Press, San Diego, pp 3–25.  https://doi.org/10.1016/B978-0-12-416015-6.00001-0 CrossRefGoogle Scholar
  21. Chen CS, Milan Mrksichl SH, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428.  https://doi.org/10.1126/science.276.5317.1425 CrossRefGoogle Scholar
  22. Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238.  https://doi.org/10.1016/S0021-9290(98)00161-4 CrossRefGoogle Scholar
  23. Cowin SC (ed) (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  24. Cowin SC, Cardoso L (2015) Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech 48(5):842–854.  https://doi.org/10.1016/j.jbiomech.2014.12.013 CrossRefGoogle Scholar
  25. Cowin SC, Weinbaum S (1998) Strain amplification in the bone mechanosensory system. Am J Med Sci 316(3):184–188.  https://doi.org/10.1016/S0002-9629(15)40399-4 CrossRefGoogle Scholar
  26. Crowder C, Stout S (eds) (2011) Bone histology: an anthropological perspective. CRC Press, Boca RatonGoogle Scholar
  27. Currey J (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21(2):131–139.  https://doi.org/10.1016/0021-9290(88)90006-1 CrossRefGoogle Scholar
  28. Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 1192(1):437–443.  https://doi.org/10.1111/j.1749-6632.2009.05246.x CrossRefGoogle Scholar
  29. Daly RM (2017) Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20(2):119–124.  https://doi.org/10.1080/13697137.2017.1286890 CrossRefGoogle Scholar
  30. Dong P, Haupert S, Hesse B, Langer M, Pierre-Jean GV, Bousson PF (2014) 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 60:172–185.  https://doi.org/10.1016/j.bone.2013.12.008 CrossRefGoogle Scholar
  31. Dunlop J, Fischer F, Gamsjäger E, Fratzl P (2010) A theoretical model for tissue growth in confined geometries. J Mech Phys Solids 58(8):1073–1087.  https://doi.org/10.1016/j.jmps.2010.04.008 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235:176–190.  https://doi.org/10.1002/dvdy.20603 CrossRefGoogle Scholar
  33. Gamsjäger E, Bidan C, Fischer F, Fratzl P, Dunlop J (2013) Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater 9(3):5531–5543.  https://doi.org/10.1016/j.actbio.2012.10.020 CrossRefGoogle Scholar
  34. Graham JM, Ayati BP, Holstein SA, Martin JA (2013) The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8(5):1–10.  https://doi.org/10.1371/journal.pone.0063884 CrossRefGoogle Scholar
  35. Granke M, Lopez O, Grimal Q, Allain JM, Saied A, Crépin J, Laugier P (2012) Contribution of matrix heterogeneity and pores to local strains in human cortical bone. J Biomech 45(Supplement 1):S474.  https://doi.org/10.1016/S0021-9290(12)70475-X CrossRefGoogle Scholar
  36. Grimal Q, Raum K, Gerisch A, Laugier P (2011) A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 10(6):925–37.  https://doi.org/10.1007/s10237-010-0284-9 CrossRefGoogle Scholar
  37. Guyot Y, Papantoniou I, Chai Y, Van Bael S, Schrooten J, Geris L (2014) A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech Model Mechanobiol 13(6):1361–1371.  https://doi.org/10.1007/s10237-014-0577-5 CrossRefGoogle Scholar
  38. Guyot Y, Luyten F, Schrooten J, Papantoniou I, Geris L (2015) A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnol Bioeng 112(12):2591–2600.  https://doi.org/10.1002/bit.25672 CrossRefGoogle Scholar
  39. Guyot Y, Papantoniou I, Luyten FP, Geris L (2016) Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-015-0753-2 CrossRefGoogle Scholar
  40. Hannah K, Thomas C, Clement J, Carlo FD, Peele A (2010) Bimodal distribution of osteocyte lacunar size in the human femoral cortex as revealed by micro-CT. Bone 47(5):866–871.  https://doi.org/10.1016/j.bone.2010.07.025 CrossRefGoogle Scholar
  41. Hennig C, Thomas CDL, Clement JG, Cooper DML (2015) Does 3D orientation account for variation in osteon morphology assessed by 2D histology? J Anat 227(4):497–505.  https://doi.org/10.1111/joa.12357 CrossRefGoogle Scholar
  42. Kinney J, Lane N, Haupt D (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10(2):264–270.  https://doi.org/10.1002/jbmr.5650100213 CrossRefGoogle Scholar
  43. Knychala J, Bouropoulos N, Catt C, Katsamenis O, Please C, Sengers B (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organisation. Ann Biomed Eng 41(5):917–930.  https://doi.org/10.1007/s10439-013-0748-z CrossRefGoogle Scholar
  44. Kwon RY, Meays DR, Tang WJ, Frangos JA (2010) Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 25(8):1798–1807.  https://doi.org/10.1002/jbmr.74 CrossRefGoogle Scholar
  45. Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, Yeh J, Frangos JA (2012) Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS ONE 7(3):e33,336.  https://doi.org/10.1371/journal.pone.0033336 CrossRefGoogle Scholar
  46. Lassen NE, Andersen TL, Pløen GG, Søe K, Hauge EM, Harving S, Eschen GET, Delaisse JM (2017) Coupling of bone resorption and formation in real time: new knowledge gained from human haversian BMUs. J Bone Miner Res 32(7):1395–1405.  https://doi.org/10.1002/jbmr.3091 CrossRefGoogle Scholar
  47. Lee WR (1964) Appositional bone formation in canine bone: a quantitative microscopic study using tetracycline markers. J Anat 98(4):665–677Google Scholar
  48. Lerebours C, Buenzli PR (2016) Towards a cell-based mechanostat theory of bone: the need to account for osteocyte desensitisation and osteocyte replacement. J Biomech 49(13):2600–2606.  https://doi.org/10.1016/j.jbiomech.2016.05.012 CrossRefGoogle Scholar
  49. Lerebours C, Buenzli PR, Scheiner S, Pivonka P (2016) A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech Model Mechanobiol 15(1):43–67.  https://doi.org/10.1007/s10237-015-0705-x CrossRefGoogle Scholar
  50. Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumour. Nonlinearity 23:R1–R91.  https://doi.org/10.1088/0951-7715/23/1/R01 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Maggiano CM (2011) Making the mold. A microstructural perspective on bone modeling during growth and mechanical adaptation. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 45–90CrossRefGoogle Scholar
  52. Maggiano IS, Schultz M, Kierdorf H, Sosa TS, Maggiano CM, Tiesler Blos V (2008) Cross-sectional analysis of long bones, occupational activities and long-distance trade of the classic maya from xcambarchaeological and osteological evidence. Am J Phys Anthropol 136(4):470–477.  https://doi.org/10.1002/ajpa.20830 CrossRefGoogle Scholar
  53. Manson JD, Waters NE (1965) Observations on the rate of maturation of the cat osteon. J Anat 99(3):539–549Google Scholar
  54. Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14(2):133–8.  https://doi.org/10.1038/nn.2735 CrossRefGoogle Scholar
  55. Marotti G (2000) The osteocyte as a wiring transmission system. J Musculoskelet Neuronal Interact 1(2):133–136Google Scholar
  56. Marotti G, Zallone AZ, Ledda M (1976) Number, size and arrangement of osteoblasts in osteons at different stages of formation. Calcif Tissue Res 21:96–101.  https://doi.org/10.1007/BF02546434 CrossRefGoogle Scholar
  57. Martin R (1972) The effects of geometric feedback in the development of osteoporosis. J Biomech 5(5):447–455.  https://doi.org/10.1016/0021-9290(72)90003-6 CrossRefGoogle Scholar
  58. Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10(3):179–222Google Scholar
  59. Martin R (2000) Does osteocyte formation cause the nonlinear refilling of osteons? Bone 26:71–78.  https://doi.org/10.1016/S8756-3282(99)00242-2 CrossRefGoogle Scholar
  60. Martin R, Burr D, Sharkey N (1998) Skeletal tissue mechanics. Springer, New YorkCrossRefGoogle Scholar
  61. Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51(6):1235–1239.  https://doi.org/10.1111/j.1556-4029.2006.00260.x CrossRefGoogle Scholar
  62. Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17(1):82–90.  https://doi.org/10.1002/oa.856 CrossRefGoogle Scholar
  63. MATLAB (2016) Version 9.1.0 (R2016b). The MathWorks Inc., NatickGoogle Scholar
  64. Mays S (2010) The archaeology of human bones. Taylor & Francis. https://books.google.com.my/books?id=s71ocyS3xmUC CrossRefGoogle Scholar
  65. McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75(8):1193–1205CrossRefGoogle Scholar
  66. Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a latticefree model. Cell Prolif 34(4):253–266.  https://doi.org/10.1046/j.0960-7722.2001.00216.x CrossRefGoogle Scholar
  67. Metz LN, Martin RB, Turner AS (2003) Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodeling. Bone 33(5):753–759.  https://doi.org/10.1016/S8756-3282(03)00245-X CrossRefGoogle Scholar
  68. Murray PJ, Edwards CM, Tindall MJ, Maini PK (2009) From a discrete to a continuum model of cell dynamics in one dimension. Phys Rev E 80(031):912.  https://doi.org/10.1103/PhysRevE.80.031912 CrossRefGoogle Scholar
  69. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS, Langer R (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11,594–11,599.  https://doi.org/10.1073/pnas.0502575102 CrossRefGoogle Scholar
  70. O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95.  https://doi.org/10.1016/S1369-7021(11)70058-X CrossRefGoogle Scholar
  71. Parfitt A (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker R (ed) Bone histomorphometry: techniques and interpretation, chap 9. CRC Press, Boca Raton, pp 143–224Google Scholar
  72. Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–286.  https://doi.org/10.1002/jcb.240550303 CrossRefGoogle Scholar
  73. Paris M, Gtz A, Hettrich I, Bidan CM, Dunlop JW, Razi H, Zizak I, Hutmacher DW, Fratzl P, Duda GN, Wagermaier W, Cipitria A (2017) Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomater 60:64–80.  https://doi.org/10.1016/j.actbio.2017.07.029 CrossRefGoogle Scholar
  74. Pazzaglia UE, Congiu T, Marchese M, Spagnuolo R, Quacci D (2012) Morphometry and patterns of lamellar bone in human Haversian systems. Anat Rec 295:1421–1429.  https://doi.org/10.1002/ar.22535 CrossRefGoogle Scholar
  75. Petrov N, Pollack S, Blagoeva R (1989) A discrete model for streaming potentials in a single osteon. J Biomech 22(6):517–521.  https://doi.org/10.1016/0021-9290(89)90002-X CrossRefGoogle Scholar
  76. Pivonka P, Buenzli PR, Scheiner S, Hellmich R, Dunstan C (2013) The influence of bone surface availability in bone remodelling: a mathematical model including coupled geometrical and biomechanical regulations of bone cells. Eng Struct 47:134–147.  https://doi.org/10.1016/j.engstruct.2012.09.006 CrossRefGoogle Scholar
  77. Polig E, Jee W (1990) A model of osteon closure in cortical bone. Calcif Tissue Int 47(5):261–269.  https://doi.org/10.1007/BF02555907 CrossRefGoogle Scholar
  78. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Nat Acad Sci 104:15,988–15,993.  https://doi.org/10.1073/pnas.0705062104 CrossRefGoogle Scholar
  79. Power J, Poole KE, van Bezooijen R, Doube M, Caballero-Alias AM, Lowik C, Papapoulos S, Reeve J, Loveridge N (2010) Sclerostin and the regulation of bone formation: effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res 25(8):1867–1876.  https://doi.org/10.1002/jbmr.70 CrossRefGoogle Scholar
  80. Price JS, Allen S, Faucheux C, Althnaian T, Mount JG (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207(5):603–618.  https://doi.org/10.1111/j.1469-7580.2005.00478.x CrossRefGoogle Scholar
  81. Puleo D, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20(23):2311–2321.  https://doi.org/10.1016/S0142-9612(99)00160-X CrossRefGoogle Scholar
  82. Qin YX, Kaplan T, Saldanha A, Rubin C (2003) Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech 36(10):1427–1437.  https://doi.org/10.1016/S0021-9290(03)00127-1 CrossRefGoogle Scholar
  83. Ripamonti U (2009) Biomimetism, biomimetic matrices and the induction of bone formation. J Cell Mol Med 13:2953–2972CrossRefGoogle Scholar
  84. Robling AG, Stout SD (1999) Morphology of the drifting osteon. Cells Tissues Organs 164(4):192–204.  https://doi.org/10.1159/000016659 CrossRefGoogle Scholar
  85. Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K (2012) Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 45(13):2264–2270.  https://doi.org/10.1016/j.jbiomech.2012.06.003 CrossRefGoogle Scholar
  86. Rolli CG, Nakayama H, Yamaguchi K, Spatz JP, Kemkemer R, Nakanishi J (2012) Switchable adhesive substrates: revealing geometry dependence in collective cell behavior. Biomaterials 33:2409–2418.  https://doi.org/10.1016/j.biomaterials.2011.12.01 CrossRefGoogle Scholar
  87. Rumpler M, Woesz A, Dunlop J, van Dongen J, Fratzl P (2008) The effect of geometry on three-dimensional tissue growth. J R Soc Interface 5:1173–1180.  https://doi.org/10.1098/rsif.2008.0064 CrossRefGoogle Scholar
  88. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16.  https://doi.org/10.1016/0021-9290(88)90186-8 CrossRefGoogle Scholar
  89. Schantz JT, Woodruff MA, Lam CX, Lim TC, Machens HG, Teoh SH, Hutmacher DW (2012) Differentiation potential of mesenchymal progenitor cells following transplantation into calvarial defects. J Mech Behav Biomed Mater 11:132–142.  https://doi.org/10.1016/j.jmbbm.2012.02.008 (special Issue on Tissue Engineering)CrossRefGoogle Scholar
  90. Seeman E (2008) Chapter 1: Modeling and remodeling: the cellular machinery responsible for the gain and loss of bone’s material and structural strength. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Academic Press, San Diego, pp 1–28.  https://doi.org/10.1016/B978-0-12-373884-4.00023-9 CrossRefGoogle Scholar
  91. Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593.  https://doi.org/10.1016/S0142-9612(01)00002-3 CrossRefGoogle Scholar
  92. Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Rep.  https://doi.org/10.1038/bonekey.2013.215 CrossRefGoogle Scholar
  93. Skedros JG, Hunt KJ, Bloebaum RD (2004) Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus. J Morphol 259(3):281–307.  https://doi.org/10.1002/jmor.10167 CrossRefGoogle Scholar
  94. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD (2005) Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec Part A Discov Mol Cell Evol Biol 286A(1):781–803.  https://doi.org/10.1002/ar.a.20214 CrossRefGoogle Scholar
  95. Thomas CDL, Feik SA, Clement JG (2006) Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209(2):219–230.  https://doi.org/10.1111/j.1469-7580.2006.00589.x CrossRefGoogle Scholar
  96. Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 8(11):875–8CrossRefGoogle Scholar
  97. Zallone AZ (1977) Relationships between shape and size of the osteoblasts and the accretion rate of trabecular bone surfaces. Anat Embryol 152(1):65–72.  https://doi.org/10.1007/BF00341435 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
  3. 3.School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations