Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 4, pp 1037–1052 | Cite as

A hybrid computational model for collective cell durotaxis

  • Jorge Escribano
  • Raimon Sunyer
  • María Teresa Sánchez
  • Xavier Trepat
  • Pere Roca-Cusachs
  • José Manuel García-Aznar
Original Paper

Abstract

Collective cell migration is regulated by a complex set of mechanical interactions and cellular mechanisms. Collective migration emerges from mechanisms occurring at single cell level, involving processes like contraction, polymerization and depolymerization, of cell–cell interactions and of cell–substrate adhesion. Here, we present a computational framework which simulates the dynamics of this emergent behavior conditioned by substrates with stiffness gradients. The computational model reproduces the cell’s ability to move toward the stiffer part of the substrate, process known as durotaxis. It combines the continuous formulation of truss elements and a particle-based approach to simulate the dynamics of cell–matrix adhesions and cell–cell interactions. Using this hybrid approach, researchers can quickly create a quantitative model to understand the regulatory role of different mechanical conditions on the dynamics of collective cell migration. Our model shows that durotaxis occurs due to the ability of cells to deform the substrate more in the part of lower stiffness than in the stiffer part. This effect explains why cell collective movement is more effective than single cell movement in stiffness gradient conditions. In addition, we numerically evaluate how gradient stiffness properties, cell monolayer size and force transmission between cells and extracellular matrix are crucial in regulating durotaxis.

Keywords

Mechanics of cell migration Stiffness gradients Durotaxis Cell contractility Hybrid modeling approach Collective cell motion 

Notes

Acknowledgements

This work is supported by the Spanish Ministry of Economy and Competitiveness/FEDER (FPI BES-2013- 063684 to J.E., DPI201564221C21R to J.M.G.-A., BFU2016-79916-P and BFU2014-52586-REDT to PR-C, BFU2015-65074-P to XT), the Generalitat de Catalunya (2014-SGR-927 to XT and CERCA program), the European Research Council (StG 306571 to J.M.G.-A. and CoG-616480 to XT), European Commission (Grant Agreement SEP-210342844 to PR-C and XT). IBEC is recipient of a Severo Ochoa Award of Excellence from the MINECO.

Supplementary material

10237_2018_1010_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (docx 12 KB)
10237_2018_1010_MOESM2_ESM.tiff (244 kb)
Supplementary material 2 (tiff 244 KB)
10237_2018_1010_MOESM3_ESM.tiff (269 kb)
Supplementary material 3 (tiff 268 KB)
10237_2018_1010_MOESM4_ESM.mp4 (1 mb)
Supplementary material 4 (mp4 1043 KB)
10237_2018_1010_MOESM5_ESM.tiff (134 kb)
Supplementary material 5 (tiff 134 KB)
10237_2018_1010_MOESM6_ESM.mp4 (14 kb)
Supplementary material 6 (mp4 14 KB)
10237_2018_1010_MOESM7_ESM.tiff (181 kb)
Supplementary material 7 (tiff 181 KB)
10237_2018_1010_MOESM8_ESM.tiff (163 kb)
Supplementary material 8 (tiff 163 KB)

References

  1. Allena R, Scianna M, Preziosi L (2016) A Cellular Potts model of single cell migration in presence of durotaxis. Math Biosci 275:57–70.  https://doi.org/10.1016/j.mbs.2016.02.011 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aman A, Piotrowski T (2010) Cell migration during morphogenesis. Dev Biol 341:20–33.  https://doi.org/10.1016/j.ydbio.2009.11.014 CrossRefGoogle Scholar
  3. Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3:303–317.  https://doi.org/10.7150/ijbs.3.303 CrossRefGoogle Scholar
  4. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  5. Bookholt FD, Monsuur HN, Gibbs S, Vermolen FJ (2016) Mathematical modelling of angiogenesis using continuous cell-based models. Biomech Model Mechanobiol 15:1577–1600.  https://doi.org/10.1007/s10237-016-0784-3 CrossRefGoogle Scholar
  6. Boon WM, Koppenol DC, Vermolen FJ (2016) A multi-agent cell-based model for wound contraction. J Biomech 49:1388–1401.  https://doi.org/10.1016/j.jbiomech.2015.11.058 CrossRefGoogle Scholar
  7. Camley B, Rappel W-J (2017) Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys 50:113002.  https://doi.org/10.1088/1361-6463/aa56fe CrossRefGoogle Scholar
  8. Camley BA, Zhang Y, Zhao Y et al (2014) Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc Natl Acad Sci 111:14770–14775.  https://doi.org/10.1073/pnas.1414498111 CrossRefGoogle Scholar
  9. Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691CrossRefGoogle Scholar
  10. Chen J, Weihs D, Vermolen FJ (2017) A model for cell migration in non-isotropic fibrin networks with an application to pancreatic tumor islets. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-017-0966-7
  11. Cherry JL, Adler FR (2000) How to make a biological switch. J Theor Biol 203:117–133.  https://doi.org/10.1006/jtbi.2000.1068 CrossRefGoogle Scholar
  12. Cochet-Escartin O, Ranft J, Silberzan P, Marcq P (2014) Border forces and friction control epithelial closure dynamics. Biophys J 106:65–73.  https://doi.org/10.1016/j.bpj.2013.11.015 CrossRefGoogle Scholar
  13. Collins JJ, Gardner TS, Cantor CR (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342.  https://doi.org/10.1038/35002131 CrossRefGoogle Scholar
  14. Condor M, Garcia-Aznar JM (2017) A phenomenological cohesive model for the macroscopic simulation of cell-matrix adhesions. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-017-0883-9
  15. Del Amo C, Borau C, Movilla N et al (2017) Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integr Biol 9:339–349.  https://doi.org/10.1039/C7IB00022G CrossRefGoogle Scholar
  16. Dokukina IV, Gracheva ME (2010) A model of fibroblast motility on substrates with different rigidities. Biophys J 98:2794–2803.  https://doi.org/10.1016/j.bpj.2010.03.026 CrossRefGoogle Scholar
  17. Doyle PS, Shaqfeh ESG, Gast AP (1997) Dynamic simulation of freely draining flexible polymers in steady linear flows. J Fluid Mech 334:251–291.  https://doi.org/10.1017/S0022112096004302 CrossRefzbMATHGoogle Scholar
  18. Drasdo D, Hoehme S (2012) Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones. New J Phys.  https://doi.org/10.1088/1367-2630/14/5/055026
  19. Elosegui-Artola A, Bazellières E, Allen MD et al (2014) Rigidity sensing and adaptation through regulation of integrin types. Nat Mater 13:631–7.  https://doi.org/10.1038/nmat3960 CrossRefGoogle Scholar
  20. Elosegui-Artola A, Oria R, Chen Y et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548.  https://doi.org/10.1038/ncb3336 CrossRefGoogle Scholar
  21. Escribano J, Sánchez MT, García-Aznar JM (2014) A discrete approach for modeling cell-matrix adhesions. Comput Part Mech 1:117–130.  https://doi.org/10.1007/s40571-014-0006-7 CrossRefGoogle Scholar
  22. Escribano J, Sanchez MT, Garcıa-Aznar JM (2015) Modeling the formation of cell-matrix adhesions in 3D matrices. J Theor Biol 384:84–94.  https://doi.org/10.1016/j.jtbi.2015.07.015 CrossRefzbMATHGoogle Scholar
  23. Gardel ML, Sabass B, Ji L et al (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde fl ow speed. J Cell Biol 183:999–1005.  https://doi.org/10.1083/jcb.200810060 CrossRefGoogle Scholar
  24. Gonzalez-Valverde I, Garcia-Aznar JM (2017) A hybrid computational model to explore the topological characteristics of epithelial tissues. Int J Numer Method Biomed Eng.  https://doi.org/10.1002/cnm.2877
  25. Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–566.  https://doi.org/10.1016/j.tcb.2015.06.003 CrossRefGoogle Scholar
  26. Hartman CD, Isenberg BC, Chua SG, Wong JY (2016) Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc Natl Acad Sci U S A 113:11190–11195.  https://doi.org/10.1073/pnas.1611324113 CrossRefGoogle Scholar
  27. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis, vol 825. Prentice-Hall, Inc, Englewood CliffszbMATHGoogle Scholar
  28. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North ChelmsfordGoogle Scholar
  29. Jia D, Jolly MK, Boareto M et al (2015) OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 6:15436–15448.  https://doi.org/10.18632/oncotarget.3623 Google Scholar
  30. Kabla AJ (2012) Collective cell migration: leadership, invasion and segregation. J R Soc Interface 9(77):3268–3278.  https://doi.org/10.1098/rsif.2012.0448 CrossRefGoogle Scholar
  31. Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–4.  https://doi.org/10.1038/nature09621 CrossRefGoogle Scholar
  32. Kim T, Hwang W, Kamm RD (2007) Computational analysis of a cross-linked actin-like network. Exp Mech 49:91–104CrossRefGoogle Scholar
  33. Kim MC, Whisler J, Silberberg YR et al (2015) Cell invasion dynamics into a three dimensional extracellular matrix fibre network. PLoS Comput Biol 11:1–29.  https://doi.org/10.1371/journal.pcbi.1004535 Google Scholar
  34. Kong F, García AJ, Mould aP et al (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–84.  https://doi.org/10.1083/jcb.200810002 CrossRefGoogle Scholar
  35. Kulawiak DA, Camley BA, Rappel W-J (2016) Modeling contact inhibition of locomotion of colliding cells migrating on micropatterned substrates. PLoS Comput Biol 12(12):1–25.  https://doi.org/10.1371/journal.pcbi.1005239 CrossRefGoogle Scholar
  36. Lang NR, Skodzek K, Hurst S et al (2015) Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater 13:61–67.  https://doi.org/10.1016/j.actbio.2014.11.003 CrossRefGoogle Scholar
  37. Leong FY (2013) Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model. Biophys J 105:2301–2311.  https://doi.org/10.1016/j.bpj.2013.09.051 CrossRefGoogle Scholar
  38. Lin S-Z, Li B, Xu G-K, Feng X-Q (2016) Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. J Biomech 52:140–147.  https://doi.org/10.1016/j.jbiomech.2016.12.035 CrossRefGoogle Scholar
  39. Liu F, Mih JD, Shea BS et al (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190:693–706.  https://doi.org/10.1083/jcb.201004082 CrossRefGoogle Scholar
  40. Majumdar R, Sixt M, Parent CA (2014) New paradigms in the establishment and maintenance of gradients during directed cell migration. Curr Opin Cell Biol 30:33–40.  https://doi.org/10.1016/j.ceb.2014.05.010 CrossRefGoogle Scholar
  41. Malet-Engra G, Yu W, Oldani A et al (2015) Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol 25:242–250.  https://doi.org/10.1016/j.cub.2014.11.030 CrossRefGoogle Scholar
  42. Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276:75–81.  https://doi.org/10.1126/science.276.5309.75 CrossRefGoogle Scholar
  43. Mayor R, Carmona-Fontaine C (2010) Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 20:319–328.  https://doi.org/10.1016/j.tcb.2010.03.005 CrossRefGoogle Scholar
  44. Méhes E, Vicsek T (2014) Collective motion of cells: from experiments to models. Integr Biol 6:831–854.  https://doi.org/10.1039/C4IB00115J CrossRefGoogle Scholar
  45. Merkher Y, Weihs D (2017) Proximity of metastatic cells enhances their mechanobiological invasiveness. Ann Biomed Eng 45(6):1399–1406.  https://doi.org/10.1007/s10439-017-1814-8 CrossRefGoogle Scholar
  46. Moreno-Arotzena O, Borau C, Movilla N et al (2015) Fibroblast migration in 3D is controlled by haptotaxis in a non-muscle myosin II-dependent manner. Ann Biomed Eng 43:3025–3039.  https://doi.org/10.1007/s10439-015-1343-2 CrossRefGoogle Scholar
  47. Movilla N, Borau C, Valero C, García-Aznar JM (2017) Degradation of extracellular matrix regulates osteoblast migration: a microfluidic-based study. Bone 107:10–17.  https://doi.org/10.1016/j.bone.2017.10.025 CrossRefGoogle Scholar
  48. Novikova EA, Storm C (2013) Contractile fibers and catch-bond clusters: a biological force sensor? Biophys J 105:1336–45.  https://doi.org/10.1016/j.bpj.2013.07.039 CrossRefGoogle Scholar
  49. Novikova EA, Raab M, Discher DE, Storm C (2017) Persistence-driven durotaxis: generic, directed motility in rigidity gradients. Phys Rev Lett 118:1–5.  https://doi.org/10.1103/PhysRevLett.118.078103 CrossRefGoogle Scholar
  50. Peng L, Trucu D, Lin P, Thompson A, Chaplain MAJ (2017) A multiscale mathematical model of tumour invasive growth. Bull Math Biol 79(3):389–429.  https://doi.org/10.1007/s11538-016-0237-2 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527.  https://doi.org/10.1038/jid.2014.371 CrossRefGoogle Scholar
  52. Reina-Romo E, Gómez-Benito MJ, García-Aznar JM et al (2010) Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech Model Mechanobiol 9:103–115.  https://doi.org/10.1007/s10237-009-0162-5 CrossRefGoogle Scholar
  53. Roca-Cusachs P, Sunyer R, Trepat X (2013) Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 25:543–549.  https://doi.org/10.1016/j.ceb.2013.04.010 CrossRefGoogle Scholar
  54. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467.  https://doi.org/10.1016/0021-9290(94)90021-3 CrossRefGoogle Scholar
  55. Rørth P (2011) Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev Cell 20:9–18.  https://doi.org/10.1016/j.devcel.2010.12.014 CrossRefGoogle Scholar
  56. Sepúlveda N, Petitjean L, Cochet O et al (2013) Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput Biol 9:e1002944.  https://doi.org/10.1371/journal.pcbi.1002944 MathSciNetCrossRefGoogle Scholar
  57. Singh SP, Schwartz MP, Lee JY et al (2014) A peptide functionalized poly (ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater Sci 2:1024.  https://doi.org/10.1039/c4bm00022f CrossRefGoogle Scholar
  58. Stefanoni F, Ventre M, Mollica F, Netti PA (2011) A numerical model for durotaxis. J Theor Biol 280:150–158.  https://doi.org/10.1016/j.jtbi.2011.04.001 CrossRefGoogle Scholar
  59. Sunyer R, Conte V, Escribano J et al (2016) Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353:1157–1161.  https://doi.org/10.5061/dryad.r8h3n CrossRefGoogle Scholar
  60. Tambe DT, Corey Hardin C, Angelini TE et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–475.  https://doi.org/10.1038/nmat3025 CrossRefGoogle Scholar
  61. Theveneau E, Marchant L, Kuriyama S et al (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53.  https://doi.org/10.1016/j.devcel.2010.06.012 CrossRefGoogle Scholar
  62. Ulrich TA, De Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174.  https://doi.org/10.1158/0008-5472.CAN-08-4859 CrossRefGoogle Scholar
  63. Vermolen FJ, van der Meijden RP, Van Es M et al (2015) Towards a mathematical formalism for semi-stochastic cell-level computational modeling of tumor initiation. Ann Biomed Eng 43:1680–1694.  https://doi.org/10.1007/s10439-015-1271-1 CrossRefGoogle Scholar
  64. Vermolen FJ, Arkesteijn ECMM, Gefen A (2016) Modelling the immune system response to epithelial wound infections. J Theor Biol 393:158–169.  https://doi.org/10.1016/j.jtbi.2015.12.030 CrossRefzbMATHGoogle Scholar
  65. Wolfenson H, Meacci G, Liu S et al (2016) Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol 18:33–42.  https://doi.org/10.1038/ncb3277 CrossRefGoogle Scholar
  66. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829.  https://doi.org/10.1016/j.devcel.2008.05.009 CrossRefGoogle Scholar
  67. Yu G, Feng J, Man H, Levine H (2017) Phenomenological modeling of durotaxis. Phys Rev E 96(1):1–6.  https://doi.org/10.1103/PhysRevE.96.010402 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ZaragozaZaragozaSpain
  2. 2.Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
  3. 3.Centro Universitario de la DefensaZaragozaSpain
  4. 4.University of BarcelonaBarcelonaSpain
  5. 5.Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)BarcelonaSpain
  6. 6.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations