Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 2, pp 479–497 | Cite as

A validated patient-specific FSI model for vascular access in haemodialysis

  • A. M. de VilliersEmail author
  • A. T. McBride
  • B. D. Reddy
  • T. Franz
  • B. S. Spottiswoode
Original Paper


The flow rate inside arteriovenous fistulas is many times higher than physiological flow and is accompanied by high wall shear stress resulting in low patency rates. A fluid–structure interaction finite element model is developed to analyse the blood flow and vessel mechanics to elucidate the mechanisms that can lead to failure. The simulations are validated against flow measurements obtained from magnetic resonance imaging data.


Fluid–structure interaction Fistula Blood flow Finite elements Pre-stress 



The work by AMdV, ATMcB and BDR has been supported by the National Research Foundation of South Africa through the South African Research Chair in Computational Mechanics. This support is acknowledged with thanks. The authors acknowledge and thank Delawir Kahn, Jennifer Downs, Ernesta Meintjies and Stephen Jermy for their contribution, which include project management, and capturing and processing the MRI scans.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alastrué V, Garía A, Peña E, Rodríguez JF, Martínez MA, Doblaré M (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Methods Biomed Eng 26(1):35–51CrossRefzbMATHGoogle Scholar
  2. Allon M, Robbin ML (2002) Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int 62(4):1109–1124CrossRefGoogle Scholar
  3. Ash SR, Dhamija R, Zaroura MY, Hentschel DM (2012) The StenTec gauge for measuring static intra-access pressure ratio (PIa ratio) of fistulas and grafts. In: Seminars in dialysis, Blackwell Publishing Ltd., vol 25, pp 474–481Google Scholar
  4. Bangerth W, Hartmann R, Kanschat G (2007) deal. II—a general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bank AJ, Kaiser DR, Rajala S, Cheng A (1999) In vivo human brachial artery elastic mechanics effects of smooth muscle relaxation. Circulation 100(1):41–47CrossRefGoogle Scholar
  6. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45):3534–3550MathSciNetCrossRefzbMATHGoogle Scholar
  7. Boghosian M, Cassel K, Hammes M, Funaki B, Kim S, Qian X, Wang X, Dhar P, Hines J (2014) Hemodynamics in the cephalic arch of a brachiocephalic fistula. Med Eng Phys 36(7):822–830CrossRefGoogle Scholar
  8. Bozzetto M, Ene-Iordache B, Remuzzi A (2016) Transitional flow in the venous side of patient-specific arteriovenous fistulae for hemodialysis. Ann Biomed Eng 44(8):2388–2401CrossRefGoogle Scholar
  9. Braack M, Burman E, John V, Lube G (2007) Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Eng 196(4):853–866MathSciNetCrossRefzbMATHGoogle Scholar
  10. Braack M, Mucha PB, Zajaczkowski WM (2014) Directional do-nothing condition for the navier-stokes equations. J Comput Math 32(5):507–521MathSciNetCrossRefzbMATHGoogle Scholar
  11. Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259MathSciNetCrossRefzbMATHGoogle Scholar
  12. Browne LD, OCallaghan S, Hoey DA, Griffin P, McGloughlin TM, Walsh MT (2014) Correlation of hemodynamic parameters to endothelial cell proliferation in an end to side anastomosis. Cardiovasc Eng Technol 5(1):110–118CrossRefGoogle Scholar
  13. Carroll GT, McGloughlin TM, Callanan A, Walsh MT (2009) Realistic temporal variations of shear stress modulate mmp-2 and mcp-1 expression in arteriovenous vascular access. Cell Mol Bioeng 2(4):591CrossRefGoogle Scholar
  14. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42):4506–4527MathSciNetCrossRefzbMATHGoogle Scholar
  15. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375MathSciNetCrossRefzbMATHGoogle Scholar
  16. Corpataux JM, Haesler E, Silacci P, Ris HB, Hayoz D (2002) Low-pressure environment and remodelling of the forearm vein in Brescia–Cimino haemodialysis access. Nephrol Dial Transplant 17(6):1057–1062CrossRefGoogle Scholar
  17. Cunnane CV, Cunnane EM, Walsh MT (2017) A review of the hemodynamic factors believed to contribute to vascular access dysfunction. Cardiovasc Eng Technol 8(3):1–15CrossRefGoogle Scholar
  18. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23CrossRefGoogle Scholar
  19. de Villiers A, McBride AT, Reddy BD (2017) Fsi fistula.
  20. Decorato I, Kharboutly Z, Legallais C, Salsac AV (2011) Numerical study of the influence of wall compliance on the haemodynamics in a patient-specific arteriovenous fistula. Comput Methods Biomech Biomed Eng 14(sup1):121–123CrossRefGoogle Scholar
  21. Ene-Iordache B, Remuzzi A (2012) Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol Dial Transplant 27(1):358–368CrossRefGoogle Scholar
  22. Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22(2):165–197CrossRefGoogle Scholar
  23. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35CrossRefGoogle Scholar
  24. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15(10):2172–2184CrossRefGoogle Scholar
  25. Gee M, Förster C, Wall W (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72CrossRefzbMATHGoogle Scholar
  26. Hammes M, Boghosian M, Cassel K, Watson S, Funaki B, Doshi T, Akherat SJM, Hines J, Coe F (2016) Increased inlet blood flow velocity predicts low wall shear stress in the cephalic arch of patients with brachiocephalic fistula access. PLoS ONE 11(4):e0152873CrossRefGoogle Scholar
  27. Haruguchi H, Teraoka S (2003) Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 6(4):227–235CrossRefGoogle Scholar
  28. Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput Methods Appl Mech Eng 193(1):1–23MathSciNetCrossRefzbMATHGoogle Scholar
  29. Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRefGoogle Scholar
  30. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1–3):1–48MathSciNetzbMATHGoogle Scholar
  31. Hsu MC, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem Anal Des 47(6):593–599MathSciNetCrossRefGoogle Scholar
  32. Huberts W, Canneyt KV, Segers P, Eloot S, Tordoir JHM, Verdonck P, van de Vosse FN, Bosboom EMH (2012) Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. J Biomech 45(9):1684–1691CrossRefGoogle Scholar
  33. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349MathSciNetCrossRefzbMATHGoogle Scholar
  34. Iori F, Grechy L, Corbett R, Gedroyc W, Duncan N, Caro C, Vincent P (2015) The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae. Phys Fluids 27(3):031903CrossRefGoogle Scholar
  35. Kaiser DR, Mullen K, Bank AJ (2001) Brachial artery elastic mechanics in patients with heart failure. Hypertension 38(6):1440–1445CrossRefGoogle Scholar
  36. Kang S, Choi H, Yoo JY (2012) Investigation of fluid-structure interactions using a velocity-linked P2/P1 finite element method and the generalized-\(\alpha \) method. Int J Numer Meth Eng 90(12):1529–1548MathSciNetCrossRefzbMATHGoogle Scholar
  37. Kenner T (1989) The measurement of blood density and its meaning. Basic Res Cardiol 84(2):111–124CrossRefGoogle Scholar
  38. Kharboutly Z, Deplano V, Bertrand E, Legallais C (2010) Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med Eng Phys 32(2):111–118CrossRefGoogle Scholar
  39. Kroll MH, Hellums JD, McIntire L, Schafer A, Moake J (1996) Platelets and shear stress. Blood 88(5):1525–1541Google Scholar
  40. Lee SW, Smith DS, Loth F, Fischer PF, Bassiouny HS (2007) Importance of flow division on transition to turbulence within an arteriovenous graft. J Biomech 40(5):981–992CrossRefGoogle Scholar
  41. Malik J, Tuka V, Tesar V (2009) Local hemodynamics of the vascular access for hemodialysis. Kidney Blood Press Res 32(1):59–66CrossRefGoogle Scholar
  42. Manini S, Passera K, Huberts W, Botti L, Antiga L, Remuzzi A (2014) Computational model for simulation of vascular adaptation following vascular access surgery in haemodialysis patients. Comput Methods Biomech Biomed Eng 17(12):1358–1367CrossRefGoogle Scholar
  43. Markl M, Kilner PJ, Ebbers T (2011) Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13(7):10–1186Google Scholar
  44. McGah PM, Leotta DF, Beach KW, Aliseda A (2014) Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula. Biomech Model Mechanobiol 13(3):679–695CrossRefGoogle Scholar
  45. Meyerson SL, Skelly CL, Curi MA, Shakur UM, Vosicky JE, Glagov S, Christen T, Gabbiani G, Schwartz LB (2001) The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J Vasc Surg 34(1):90–97CrossRefGoogle Scholar
  46. Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL et al (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48(3):277–291Google Scholar
  47. Ngoepe MN, Reddy BD, Kahn D, Meyer C, Zilla P, Franz T (2011) A numerical tool for the coupled mechanical assessment of anastomoses of PTFE arterio-venous access grafts. Cardiovasc Eng Technol 2(3):160–172CrossRefGoogle Scholar
  48. Niemann AK, Udesen J, Thrysoe S, Nygaard JV, Frund ET, Petersen SE, Hasenkam JM (2010) Can sites prone to flow induced vascular complications in a-v fistulas be assessed using computational fluid dynamics? J Biomech 43(10):2002–2009CrossRefGoogle Scholar
  49. Pelteret JP, McBride A (2016) The step—44 tutorial program.
  50. Roy S, Silacci P, Stergiopulos N (2005) Biomechanical proprieties of decellularized porcine common carotid arteries. Am J Physiol Heart Circ Physiol 289(4):H1567–H1576CrossRefGoogle Scholar
  51. Ryou HS, Kim S, Ro K (2013) A numerical study of the effect of catheter angle on the blood flow characteristics in a graft during hemodialysis. Korea-Aust Rheol J 25(1):19–27CrossRefGoogle Scholar
  52. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarch PM, London GM (2002) Central pulse pressure and mortality in end-stage renal disease. Hypertension 39(3):735–738CrossRefGoogle Scholar
  53. Shirazian S, Rios-Rojas L, Drakakis J, Dikkala S, Dutka P, Duey M, Cho DJ, Fishbane S (2012) The effect of hemodialysis ultrafiltration on changes in whole blood viscosity. Hemodial Int 16(3):342–350CrossRefGoogle Scholar
  54. Van Canneyt K, Pourchez T, Eloot S, Guillame C, Bonnet A, Segers P, Verdonck P (2010) Hemodynamic impact of anastomosis size and angle in side-to-end arteriovenous fistulae: a computer analysis. J Vasc Access 11(1):52–58CrossRefGoogle Scholar
  55. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29):3776–3796MathSciNetCrossRefzbMATHGoogle Scholar
  56. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng 13(5):625–640CrossRefGoogle Scholar
  57. Wick T (2013) Solving monolithic fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates with the deal.II library. Arch Numer Softw 1(1):1–19Google Scholar
  58. Wick T (2015) Modeling, discretization, optimization, and simulation of fluid-structure interaction. Lecture notes,
  59. Zhuang YJ, Singh T, Zarins C, Masuda H (1998) Sequential increases and decreases in blood flow stimulates progressive intimal thickening. Eur J Vasc Endovasc Surg 16(4):301–310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. M. de Villiers
    • 1
    • 2
    Email author
  • A. T. McBride
    • 1
    • 3
  • B. D. Reddy
    • 1
  • T. Franz
    • 4
  • B. S. Spottiswoode
    • 5
  1. 1.Centre for Research in Computational and Applied MechanicsUniversity of Cape TownCape TownSouth Africa
  2. 2.Division of Applied MathematicsStellenbosch UniversityStellenboschSouth Africa
  3. 3.School of EngineeringUniversity of GlasgowGlasgowUK
  4. 4.Division of Biomedical EngineeringUniversity of Cape TownCape TownSouth Africa
  5. 5.Siemens Medical Solutions USA, Inc.KnoxvilleUSA

Personalised recommendations