Skip to main content

Advertisement

Log in

Simulation of the human airways using virtual topology tools and meshing optimization

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A method is proposed to improve the quality of the three-dimensional airway geometric models using a commercial software, checking the number of elements, meshing time, and aspect ratio and skewness parameters. The use of real and virtual topologies combined with patch-conforming and patch-independent meshing algorithms results in four different models being the best solution the combination of virtual topology and patch-independent algorithm, due to an excellent aspect ratio and skewness of the elements, and minimum meshing time. The result is a reduction in the computational time required for both meshing and simulation due to a smaller number of cells. The use of virtual topologies combined with patch-independent meshing algorithms could be extended in bioengineering because the geometries handling is similar to this case. The method is applied to a healthy person using their computed tomography images. The resulting numerical models are able to simulate correctly a forced spirometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • 3D Slicer V4.4.0 (2014). https://www.slicer.org

  • Agujetas R, Ferrera C, Marcos AC, Alejo JP, Montanero JM (2017) Numerical and experimental analysis of the transitional flow across a real stenosis. Biomech Model Mechanobiol 16(4):1447–1458. https://doi.org/10.1007/s10237-017-0898-2

  • Ansys version 16.2 (2015) ANSYS Inc

  • Ashurst I, Malton A, Prime D, Sumby B (2000) Latest advances in the development of dry powder inhalers. Pharm Sci Technol Today 3:246–256

    Article  Google Scholar 

  • Choi L (2007) Simulation of fluid dynamics and particle transport in realistic human airways. Master’s thesis, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia

  • De Backer JW, Vos WG, Devolder A, Verhulst SL, Germonpré P, Wuyts FL, Parizel PM, De Backer W (2008) Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation. J Biomech 41:106–113

    Article  Google Scholar 

  • De Backer JW, Vos WG, Vinchurkar SC, Claes R, Drollmann A, Wulfrank D, Parizel PM, Germonpré P, De Backer W (2010) Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiology 257:854–862

    Article  Google Scholar 

  • De Backer LA, Vos W, De Backer J, Van Holsbeke C, Vinchurkar S, De Backer W (2012) The acute effect of budesonide/formoterol in COPD: a multi-slice computed tomography and lung function study. Eur Respir J 40:298–305

    Article  Google Scholar 

  • Dyedov V, Einstein DR, Jiao X, Kuprat AP, Carson JP, Pin F (2009) Variational generation of prismatic boundary-layer meshes for biomedical computing. Int J Numer Meth Eng 79:907–945

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov A et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imag 30:1323–1341

    Article  Google Scholar 

  • Fernández-Tena A (2014) Clinical applications of fluid dynamics models in respiratory disease. Ph.D. thesis, University of Oviedo, Spain. http://digibuo.uniovi.es/dspace/handle/10651/29057

  • Fernández-Tena A, Casan Clarà P (2015) Use of computational fluid dynamics in respiratory medicine. Arch Bronconeumol 2015(51):293–298

    Google Scholar 

  • Fernández-Tena A, Fernández J, Casan P (2016) Particle deposition in healthy and bronchoconstricted lung. Eur Respir J 48(60):PA4402

    Google Scholar 

  • Fernández-Tena A, Fernández J, Álvarez E, Casan P, Walters K (2017a) Design of a numerical model of lung by means of a special boundary condition in the truncated branches. Int J Numer Methods Biomed Eng 33(6):e2830

    Article  MathSciNet  Google Scholar 

  • Fernández-Tena A, Marcos AC, Martínez C, Walters DK (2017b) A new adaptive time step method for unsteady flow simulations in a human lung. Comput Methods Biomech Biomed Eng 20(8):915–917

    Article  Google Scholar 

  • Foucault G, Cuilliére JC, Francoise V, Leon JC, Maranzana R (2007) Adaptation of cad model topology for finite element analysis. Comput Aided Des 40:176–196

    Article  Google Scholar 

  • Gibson GJ, Loddenkemper R, Sibille Y, Lundbäck B, Fletcher M (2013) Lung health in europe: facts and figures. European Lung Foundation, Sheffeld

    Google Scholar 

  • Hofmann W, Martonen TB, Graham RC (1989) Predicted deposition of nonhygroscopic aerosols in the human lung as a function of subject age. J Aerosol Med 1989(2):49–68

    Article  Google Scholar 

  • Hörschler I, Meinke M, Schröder W (2003) Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids 32:39–45

    Article  MATH  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part I. Description of system. Br J Radiol 46:1016–1022

    Article  Google Scholar 

  • Inthavong K, Choi L, Tu J, Ding S, Thien F (2010) Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys 32:1198–1212

    Article  Google Scholar 

  • Islam MS, Saha SC, Sauret E, Gu Y, Ristovski Z (2015) Numerical investigation of aerosol particle transport and deposition in realistic lung airway. In: Liu GR, Das R (eds) The 6th international conference on computational methods (ICCM2015), ICCM. Scientech Publisher llc, USA, Auckland, New Zealand

  • Jahangiri M, Saghafian M, Sadeghi MR (2015) Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid–solid interaction. Comput Math Methods Med 2015:515613

    Article  MATH  Google Scholar 

  • Kannan R, Guo P, Przekwas A (2016) Particle transport in the human respiratory tract: formulation of a nodal inverse distance weighted Eulerian–Lagrangian transport and implementation of the Wind–Kessel algorithm for an oral delivery. Int J Numer Meth Biomed Eng 32(6). https://doi.org/10.1002/cnm.2746

  • Kannan R, Singh N, Przekwas A, Delvadia R, Tian G, Walenga R (2017a) Pharmaceutical aerosols deposition patterns from a dry powder inhaler: Euler Lagrangian prediction and validation. Med Eng Phys 42:35–47

    Article  Google Scholar 

  • Kannan R, Chen ZJ, Singh N, Przekwas A, Delvadia R, Tian G, Walenga R (2017b) A quasi-3D wire approach to model pulmonary airflow in human airways. Int J Numer Methods Biomed Eng 33(7):e2838

    Article  Google Scholar 

  • Kitaoka H, Takaki R, Suki B (1999) A three-dimensional model of the human airway tree. J Appl Physiol 87(6):2207–2217

    Article  Google Scholar 

  • Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kleinstreuer C, Zhang Z, Donohue JF (2008) Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng 10:195–220

    Article  Google Scholar 

  • Kolanjiyil AV, Kleinstreuer C, Sadikot RT (2017) Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: dry powder inhaler application. Comput Biol Med 84:247–253

    Article  Google Scholar 

  • Lin C, Tawhai MH, Merryn H, McLennan G, Hoffman EA (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 157:295–309

    Article  Google Scholar 

  • Lip K, Philip C (2015) Pharmaceutical aerosol electrostatics: a field with much potential for development. Ther Deliv 6:105–107

    Article  Google Scholar 

  • Marchandise E, Geuzaine C, Remacle JF (2013) Cardiovascular and lung mesh generation based on centerlines. Int J Numer Method Biomed Eng 2013(29):665–682

    Article  Google Scholar 

  • Menter F, Langtry R, Völker S (2006) Transition modelling for general purpose CFD codes. Flow Turbul Combust 77:277–303

    Article  MATH  Google Scholar 

  • Miller MR, Hankinson JATS, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, Van der Grinten CP, Gustafsson P et al (2005) Standardisation of spirometry. Eur respir J 26(2):319–338

    Article  Google Scholar 

  • Miyawaki S, Tawhai MH, Hoffman EA, Wenzel SE, Lin CL (2017) Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface. Biomech Model Mechanobiol 16:583–596

    Article  Google Scholar 

  • Nahar K, Gupta N, Gauvin R, Absar S, Patel B, Gupta V, Khademhosseini A, Ahsan F (2013) In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Phar Sci 49:805–818

    Article  Google Scholar 

  • OECD/UE (2016) Health at a glance: Europe 2016. state of health in the EU cycle. Technical report OECD/UE

  • Przywara B (2010) Projecting future health care expenditure at European level: drivers, methodology and main result. European Commission, Economic and Financial Affairs Publications, Brussels

    Google Scholar 

  • Rochefort L, Vial L, Fodil R, Mâıtre X, Louis B, Isabey D, Caillibotte G, Thiriet M, Bittoun J, Durand E, Sbirlea-Apiou G (2007) In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3 He magnetic resonance phase-contrast velocimetry. J Appl Physiol 102:2012–2023

    Article  Google Scholar 

  • Sbirlea-Apiou G, Katz I, Caillibotte G, Martonen T, Yang Y (2007) Deposition mechanics of pharmaceutical particles in human airways. In: Hickey AJ (ed) Inhalation aerosols. Physical and biological basis for therapy, 2nd edn. Informa Healthcare USA, New York, pp 1–30

    Google Scholar 

  • Scotti A, Piomelli U (2002) Turbulence models in pulsating flows. AIAA 40:537–544

    Article  Google Scholar 

  • Stahlhofen W, Rudolf G, James AC (1989) Intercomparison of experimental regional aerosol deposition data. J Aerosol Med 1989(2):285–308

    Article  Google Scholar 

  • Streinbenner JP, Wyman NJ, Chawner JR (2000) Fast surface meshing on imperfect cad models. In: 9th international meshing roundtable, Sandia National Laboratories, New Orleans, USA, pp 33–41

  • Taherian S, Rahai HR, Waddington T (2011) CFD modelling and analysis of pulmonary airways/particles transport and deposition. In: 41st AIAA fluid dynamics conference and exhibit, American Institute of Aeronautics and Astronautics. American Institute of Aeronautics and Astronautics, Honolulu, USA, pp 2011–3270

  • Tan FPP, Wood NB, Tabor G, Xu XY (2011) Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model. J Biomech Eng 133:051001

    Article  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2007a) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253

    Article  MathSciNet  MATH  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2007b) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281

    Article  MathSciNet  MATH  Google Scholar 

  • Varghese SS, Frankel SH, Fischer PF (2008) Modelling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130:014503

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics. Pearson Education Limited, England

  • Vos W, De Backer J, Poli G, De Volder A, Ghys L, Van Holsbeke C, Vinchurkar S, De Backer L, De Backer W (2013) Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol. Respiration 86:393–401

    Article  Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Academic, New York

    Book  Google Scholar 

  • Weibel ER (2009) What makes a good lung? The morphometric basis of lung function. Swiss Med Wkly 139:375–386

    Google Scholar 

  • Wilcox DC (2006) Turbulence modelling for CFD. DCW Industries, Flintridge

    Google Scholar 

  • Zhang Y, Finlay WH (2005) Measurement of the effect of cartilaginous rings on particle deposition in a proximal lung bifurcation model. Aerosol Sci Technol 39:394–399

    Article  Google Scholar 

  • Zhang Z, Kleinstreuer C, Hyun S (2012) Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J Aerosol Sci 45:34–52

    Article  Google Scholar 

  • Zheng J (2014) Numerical simulation of nanoparticle transportation and deposition in pulmonary vasculature. Master’s thesis, Department of Mechanical Engineering and Mechanics, Lehigh University, Lehigh, USA

Download references

Acknowledgements

Thanks to Dr. Alejo, Servicio Radiología (Hospital IC, Badajoz), who provided the images of this study. This work was financially supported by Junta de Extremadura under Project “Ayudas para la realización de actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de conocimiento por los Grupos de Investigación de Extremadura (GR150014)” and Sociedad Asturiana de Patología Respiratoria under project Experimental and numerical study of a three-dimensional model of an asthmatic patient airways reconstructed from CT or MR images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ferrera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Tena, A., Marcos, A.C., Agujetas, R. et al. Simulation of the human airways using virtual topology tools and meshing optimization. Biomech Model Mechanobiol 17, 465–477 (2018). https://doi.org/10.1007/s10237-017-0972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0972-9

Keywords

Navigation